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Abstract

A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA)
on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high
sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA
on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art
in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that
may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deepcrispr.net/.
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Background
CRISPR-based gene knockout is widely implemented in
various cell types and organisms. In this system, a
single-guide RNA (sgRNA) guides Cas9 proteins to spe-
cific genomic targets. Recognition and cleavage occur via
complementarity of a 20-nucleotide (nt) sequence within
the sgRNA to the genomic target, i.e., the on-target, up-
stream of a protospacer adjacent motif (PAM) at its 3′
end [1]. Extensive studies have also demonstrated that
multiple mismatches as well as DNA or RNA bulges can
be tolerated, resulting in cleavage of unintended genomic
sites, termed off-targets [2]. Such a CRISPR-Cas9 endo-
nuclease system permits genome editing at nucleotide
resolution [3, 4], while a major challenge for its effective
application is to accurately predict the sgRNA on-target
knockout efficacy and off-target (OT) profile beforehand.
Accurate prediction would facilitate the optimized design
of sgRNAs by maximizing their on-target efficacy (high
sensitivity) and minimizing their off-target effects (high
specificity) [1, 2, 5–7].

Various sgRNA design rules and tools have been devel-
oped for sgRNA on-target identification and efficacy
prediction. These methods are categorized into three
types: (1) alignment-based, where the sgRNAs are
aligned from the given genome purely by locating the
PAM (CasFinder [8], etc.); (2) hypothesis-driven, where
the sgRNA knockout efficacies are scored empirically by
considering the impact of genome context factors
(E-CRISP [9], CRISPR [6], CHOPCHOP [10], GuideScan
[11], etc.); and (3) learning-based, where the sgRNA
knockout efficacies are predicted from a training model
by considering different features (sgRNA Designer [2],
SSC [5], sgRNA Scorer [12, 13], CRISPRscan [14], etc.). A
benchmark study indicated that the latter two types of
tools generally perform better than the alignment-based
tool, although the predictions do not scale well in differ-
ent cell types [15, 16]. Novel computational methods as
well as comprehensive exploration of DNA sequence
and epigenetic features affecting sgRNA knockout effi-
cacy are required [7, 16].
Off-targets are proven to occur in CRISPR system [2,

6, 17]. Although sgRNA-guided Cas9 cutting at a par-
ticular site does not necessarily lead to functional con-
sequences (such as an in-frame shift mutation) [18],
how to accurately and quantitatively detect or predict
off-target cleavage sites is still an important issue and
remains challenging [19]. Most existing tools use sim-
ple sequence alignment with different nucleotide
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mismatches to exhaustively search for off-target sites
[20]. A few tools predict cleavage efficacy at the mis-
matched locus by designing off-target scores (for ex-
ample, CFD score [2], MIT score [6, 16, 21], etc.). Their
prediction results were compared with data generated
by whole sgRNA off-target cleavage detection tech-
niques like GUIDE-seq [22], Digenome-seq [16, 23, 24],
High-throughput genome-wide translocation sequen-
cing (HTGTS) [25], direct in situ breaks labeling se-
quencing (BLESS) [26], and integration-deficient
lentiviral vector capture (IDLV) [27]. These are essen-
tially hypothesis-based methods that use empirically de-
fined off-target criteria to identify off-target sites.
Effective learning-based prediction of the whole gen-
ome off-target profile is needed.
Currently, building a learning model for sgRNA

efficacy prediction faces several obstacles: (1) data het-
erogeneity issues where effective integration is required
for data from different cell types and experimental plat-
forms. (2) data sparsity issues where the labeled sample
size, i.e., the amount of sgRNAs with known efficacies, is
relatively small and experimentally expensive to col-
lect—insufficiently labeled data makes the current learn-
ing models inefficient; (3) data imbalance issues in
off-target site prediction—the number of true off-target
cleavage sites recognized by whole-genome off-target de-
tection techniques is small among all the possible nu-
cleotide mismatch loci; (4) the leading sequence and
epigenetic features affecting sgRNA efficacy remain un-
clear and await further exploration [5].
Recently, several studies have tried sophisticated learn-

ing models for on-target or off-target prediction [28–
30], but none of them have addressed these issues thor-
oughly. In our study, we present a novel and powerful
deep learning framework [31–33] to simultaneously pre-
dict sgRNA on-target knockout efficacy and a
whole-genome off-target cleavage profile that competes
favorably with the available state-of-the-art tools. Our
approach, called DeepCRISPR, is based on a carefully de-
signed hybrid deep neural network for model training
and prediction. To the best of our knowledge, this is the
most comprehensive computational platform available to
unify on-target and off-target site prediction into one
framework with deep learning. We applied a deep un-
supervised representation learning technique [32, 34] to
automatically learn the underlying representation of
sgRNAs using a complete set of genome-wide unlabeled
sgRNAs. The learned model was further tuned by a su-
pervised deep neural network using the existing labeled
sgRNAs. We point out that pre-training of huge
amounts of unlabeled sgRNAs can be used to boost the
model prediction, which has never been studied in trad-
itional sgRNA efficacy prediction. Together, Deep-
CRISPR addresses the above challenges with the

following advantages: (1) by considering the epigenetic
information in different cell types, it represents different
DNA regions from different cell types in a unified fea-
ture space and integrates the data from different experi-
ments and cell types. Although DeepCRISPR is trained
on limited cell type data, we validated that it has a gen-
erally good prediction ability when adapting to new cell
types. (2) It learns from billions of genome-wide un-
labeled sgRNAs to automatically derive a “parent net-
work”, thus generating a high-level feature
representation simultaneously for sgRNA on-target and
off-target design. In this way, DeepCRISPR optimizes
sgRNA design for both coding and non-coding regions
by considering the unsupervised pre-training of
genome-wide sgRNA sequences from these regions. The
models with and without pre-training were compared
and the superiority of unsupervised pre-training was val-
idated. (3) It applies a specific data augmentation tech-
nique to generate novel sgRNAs with biologically
meaningful labels, thus increasing the labeled training
size in sgRNA on-target site prediction. We further vali-
dated that such data augmentation indeed improves the
prediction performance and makes the training model
robust. (4) It further fine-tunes the parent network using
the labeled sgRNA data, which helps to boost the predic-
tion performance on limited labeled samples. (5) It inte-
grates an efficient bootstrapping sampling algorithm
with the training procedure, dramatically alleviating the
data imbalance issue in off-target site prediction. (6) Fi-
nally, it fully automates the identification of sequence
and epigenetic features. The model learns which features
are important in optimized sgRNA design using limited
training samples. The identified features can be used for
optimized sgRNA design. This helps to decipher the
CRISPR on-target and off-target mechanisms in a much
more efficient data-driven manner.
DeepCRISPR is available at http://www.deepcrispr.net/.

The command line code is also available at https://
github.com/bm2-lab/DeepCRISPR and https://zeno-
do.org/record/1246320. The current version of Deep-
CRISPR focuses on conventional NGG-based sgRNA
design for SpCas9 in humans. It can be easily extended
to other Cas9 species or variants and other species. Its
on-target and off-target site prediction performances
were compared with the available state-of-the-art tools.

Results
Training DeepCRISPR for sgRNA on-target and off-target
site prediction
Deep unsupervised learning for sgRNA representation
The first input of DeepCRISPR is the complete set of
20-bp sgRNA sequences with an NGG PAM across the
human genome. We extracted all the sgRNA sequences
with an NGG PAM from human coding and non-coding
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regions. These data account for ~ 0.68 billion sgRNA se-
quences with different epigenetic information curated
from 13 human cell types (see the “sgRNA encoding
with genome and epigenetic features” section). They
serve as a large-scale unlabeled sgRNA data source for
the following pre-training procedure to derive an effi-
cient feature representation of sgRNA. The whole data
collection and preprocessing were achieved by using a
SPARK-based large-scale data processing architecture
with graphic processing unit (GPU) acceleration. Each
sgRNA is initially encoded with its sequence and epigen-
etic information (see the “sgRNA encoding with genome
and epigenetic features” section). Then with these un-
labeled sgRNA sequences in hand, we use a deep un-
supervised representation learning strategy to train a
deep convolutionary denosing neural network
(DCDNN)-based autoencoder [35] to automatically learn
the underlying meaningful representation of sgRNAs in
an unsupervised manner [34] (Fig. 1c; see the
“DCDNN-based autoencoder for representation learn-
ing” section). Such a de-noising strategy helps to train
the autoencoder to robustly tolerate the noise in the
huge amount of sgRNA data. The intuitive rationale to
use autoencoder is that the unlabeled data with encoding
and decoding can be used to learn an efficient feature
representation. Such a learned feature representation
will be fitted to the following model building. The net-
work trained at this step is termed an unsupervised,
pre-trained parent network for further analysis.

A fine-tuned hybrid deep neural network for sgRNA on-
target knockout efficacy prediction
We next generated a hybrid deep neural network for
sgRNA on-target knockout efficacy prediction, compris-
ing two parts. The first part is the former pre-trained
DCDNN-based network (parent network), the output of
which is used as the input for a convolutionary neural
network (CNN; Fig. 1b, c; see the “CNN model with
pre-training based fine-tuning” section). The whole hy-
brid neural network was then trained based on the la-
beled data, i.e., the collected sgRNAs with known
on-target knockout efficacies. The training procedure
not only learned the weights for the CNN-based net-
work, but also fine-tuned the weights of the parent net-
work. Therefore, this strategy uses limited labeled data
to tune the original pre-training network weights and it
is expected to boost the prediction accuracy (Fig. 1b, c;
see the “CNN model with pre-training based fine-tuning”
section). In our study, the labeled sgRNA dataset contains
~ 0.2 million sgRNAs with known knockout efficacies.
This dataset was generated from ~ 15,000 sgRNAs across
1071 genes with known knockout efficacies in a data aug-
mentation manner (see the “On-target data sources” sec-
tion), like that used for image data processing (see the

“Data augmentation for on-target dataset” section). The
final tuned weights for the whole hybrid deep neural net-
work were used to predict the on-target knockout efficacy
of a new sgRNA. In addition, in order to achieve rigorous
evaluations of DeepCRISPR, both classification and regres-
sion models for on-target prediction were built for a com-
prehensive comparison.

Extending the model for sgRNA off-target site prediction by
reusing the parent network
We also extended the hybrid neural network for sgRNA
off-target profile prediction by reusing the pre-trained
parent network (Fig. 1c, d). First, we treated a given
sgRNA and its one possible off-target locus as a sample
pair, and these sample pairs are taken as the off-target
training samples. The sample pair was encoded in two
parts, where one part represents the encoding of the
given sgRNA and the other represents the encoding of
its possible off-target locus (Fig. 1c; see the “sgRNA en-
coding with genome and epigenetic features” section).
Such a two-part encoding presents an accurate and com-
prehensive representation of an off-target sample by
considering the original sgRNA sequence and mis-
matched sequence as a whole. During training, each part
of the sgRNA off-target sample was fitted into the
pre-trained DCDNN-based network, i.e., the parent net-
work, for feature representation learning. Next, the out-
puts of this parent network were combined together
channel-wise for the following CNN classifier, similar to
on-target site prediction (Fig. 1c). In our study, the
complete hybrid neural network was trained based on
the collected labeled sgRNA off-target datasets contain-
ing ~ 160,000 samples (see the “Off-target data sources”
section). An efficient bootstrapping algorithm was inte-
grated into the batch training of this hybrid network, al-
leviating the data imbalance issue in off-target site
prediction (Fig. 5; see the “Integrating bootstrapping into
batch training of deep neural networks to address the
data imbalance issue” section). Similar to that of
on-target site prediction, the training procedure not only
learned the weights for the CNN network, but also tuned
the weights of the parent network, resulting in two dif-
ferent “baby networks” for two parts of the sgRNA
off-target sample. The final tuned weights for the two
baby networks as well as the CNN network were used to
predict the off-target profile of a given sgRNA. Similarly,
in order to achieve rigorous evaluations of DeepCRISPR,
both classification and regression models for off-target
prediction were built for a comprehensive comparison.

Comparison of DeepCRISPR with state-of-the-art sgRNA
on-target efficacy prediction
To evaluate the ability of DeepCRISPR in sgRNA on-target
efficacy prediction, we first curated comprehensive sgRNA
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on-target knockout efficacy benchmark data for humans,
including four different cell types: i.e., hct116 [36], hek293t
[2], hela [36], and hl60 [37]. Note that such datasets were
also used by Haeussler et al. [16] for the benchmark study.
The whole dataset includes ~ 15,000 sgRNAs with experi-
mentally validated known knockout efficacies from 1071
genes. In our study, we formulated DeepCRISPR either in a
classification schema or in a regression schema for a com-
prehensive and rigorous comparison. For the classification
model, the known knockout efficacy was labeled in a binary
way (see the “On-target data sources” section). For the re-
gression model, the known knockout efficacy was inte-
grated and labeled in a numerical way (see the “On-target
data sources” section). Then, eight different testing

scenarios were carefully designed for comprehensive and
objective comparisons of DeepCRISPR with state-of-the-art
tools. Through such comparisons, we provide solid evi-
dence that (1) the deep learning models (without unsuper-
vised pre-training) are superior to shallow learning models;
(2) the unsupervised pre-training strategy boosts model
performance; (3) the data augmentation further improves
model performance and model robustness; (4) DeepCRISPR
generalized generally well in new cell types for sgRNA
on-target knockout efficacy prediction; (5) DeepCRISPR ef-
ficiently learns the high-level feature representation by
avoiding manual feature engineering for sgRNA design, in-
dicated by the apple-to-apple comparisons with the
retrained sgRNA designer (the gradient-boost-based

Fig. 1 Implementation details of DeepCRISPR. a sgRNA encoding schema. For a DNA region, the nucleotide sequence is represented by four channels, i.e.,
the A-channel, C-channel, G-channel, and T-channel, and each epigenetic feature is considered as one channel. b Training details of DeepCRISPR for sgRNA
on-target efficacy prediction. The Softmax and Identity functions correspond to classification and regression models, respectively. c Unsupervised deep
representation learning based on billions of genome-wide sgRNA sequences. d Training details of DeepCRISPR for sgRNA off-target profile prediction. The
Softmax and Identity functions correspond to classification and regression models, respectively
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classification or regression models) with the same training
data, while with different features; (6) DeepCRISPR is ro-
bust with superior performance for both classification and
regression models.

Testing scenario 1—classification schema
In this test, for the original ~ 15,000 sgRNAs with
known knockout efficacies from four cell types, 20% of
the data from each cell type were stratified by data labels
and used as independent testing sets. The remaining
80% of the data from each cell type were combined to-
gether for model training and parameter tuning during
the cross-validation process. The deep CNN-based clas-
sification model without unsupervised pre-training and
data augmentation (denoted as “CNN”) was trained and
tested on the independent test data for the four cell
lines, respectively, and compared with eight
state-of-the-art tools that were trained with human cell
line data, including sgRNA Designer [2], SSC [5], CHOP-
CHOP [10], CRISPR MultiTargeter [38], E-CRISP [9],
sgRNA Scorer [12], Cas-Designer [39], and WU-CRISPR
[40] (Fig. 2a, b). These tools cover all the available
methods designed for human sgRNA efficacy prediction,
either by a learning model or a hypothesis-based scoring
function (see Additional file 1 for a comprehensive list
of current tools and the reasons we selected these tools
for comparison). The comparison was evaluated using
the values from the area under the receiver operating
characteristic (ROC) curve (AUC) [41]. The comparison
indicated that, on average, DeepCRISPR reached an over-
all ROC-AUC of 0.796, outperforming all eight methods
with a maximum improvement of ~ 113% over sgRNA
Designer [2] (with 0.5 ROC-AUC as the baseline), which
is the next highest performing tool (Fig. 2a, b,
Additional file 2).

Testing scenario 2—classification schema
In this test, we further built our model with unsuper-
vised pre-training on ~ 0.68 billion unlabeled sgRNAs
(denoted as “pt CNN”). The same training and testing
data were used as for testing scenario 1. The overlapping
sgRNAs between the training and testing data were re-
moved. The pre-trained CNN reached an overall
ROC-AUC of 0.836 with a 142% improvement over
sgRNA designer (with 0.5 ROC-AUC as the baseline;
Fig. 2a, b; Additional file 2).

Testing scenario 3—classification schema
We further built our final DeepCRISPR model with
pre-training-based CNN plus data augmentation (de-
noted as “pt + aug CNN”). The training data were aug-
mented while the testing data were identical to those of
testing scenarios 1 and 2. The overlapping sgRNAs be-
tween the training and testing data were removed. For

this case, DeepCRISPR reached an overall ROC-AUC of
0.857, with a 157% improvement over sgRNA designer
(with 0.5 ROC-AUC as the baseline; Fig. 2a, b; Add-
itional file 2). It can be seen that the improvement in
performance was relatively small compared with testing
scenario 2, while we found that the loss function during
training converged fast and became very robust com-
pared with that of testing scenario 2 (Fig. 2c). This indi-
cates that increasing the label data amount can help to
make the model robust and converge fast during the
training.

Testing scenario 4—classification schema
In this scenario, we further tested the generalization
ability of DeepCRISPR in new cell types. For the original
~ 15,000 sgRNAs with known knockout efficacies from
four cell types, 20% of the data from each cell type were
stratified by data labels and used as independent testing
sets. The remaining 80% of the data from different cell
types were augmented as the training data, identical to
that of testing scenario 3. Then our model was trained
in a fourfold “leave one cell type out” way, each time
using the training data combined from three cell types
and testing on the leave one cell type out independent
dataset. The overlapping sgRNAs between training and
testing data were removed. This testing scenario investi-
gates the generalization ability of DeepCRISPR on new
cell types (Fig. 2d, Additional file 2). For this case, the
performance of DeepCRISPR on four cell types reached
an average ROC-AUC of 0.722, outperforming the sec-
ond best method, sgRNA designer. It can be seen that for
hct116 and hela cell types, the performance of Deep-
CRISPR was pretty good. For the hek293t cell type, all
the test tools (including DeepCRISPR) performed poorly,
mainly due to this cell type containing the majority of
samples. Therefore, training models without such cell
type data are inefficient with insufficient training data.
Furthermore, in order to investigate whether the cell
type-specific features, i.e., the cell-specific epigenetic fea-
tures, really add to the performance of DeepCRISPR, we
retrained DeepCRISPR without epigenetic features (i.e.,
the Seq-only DeepCRISPR model in Fig. 2d) for perform-
ance comparison. It can be seen in this case that the per-
formance of the Seq-only DeepCRISPR model dropped
slightly compared to the original one, indicating that (1)
the cell-specific epigenetic features do add to the per-
formance of DeepCRISPR and (2) the contribution to the
prediction performance of adding cell-specific epigenetic
features seems less than that of increasing the training
data amount, as can be seen for the HEK293T cell type.
DeepCRISPR performed moderately in the HL60 cell
type. Since most other tools (including sgRNA designer,
SSC, etc.) were trained based on HL60 data, their per-
formance was generally better than DeepCRISPR in this
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Fig. 2 (See legend on next page.)
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specific cell type. As a summary, we conclude that Deep-
CRISPR performed generally well in new cell types for
sgRNA on-target knockout efficacy prediction.

Testing scenario 5—classification schema
In this test, we provide a more rigorous and solid
apples-to-apples comparison of DeepCRISPR with sgRNA
designer, the next best tool during our former tests.
Firstly, we rigorously kept an identical comparison en-

vironment for DeepCRISPR and sgRNA designer with the
same training and testing data. For this case, we retrained
sgRNA Designer (https://github.com/MicrosoftResearch/
Azimuth, a gradient boost classification-based shallow
model) with the same augmented labeled dataset as Deep-
CRISPR used in testing scenario 3, and also kept the test-
ing data identical. Then the following two different feature
representations were performed: (1) we encoded the
sgRNA with our one-hot feature representation (denoted
as “retrained sgRNA designer with low-level feature”). This
model achieved an overall ROC-AUC of 0.751 (Fig. 2a, b,
Additional file 2); (2) we encoded the sgRNA with the ori-
ginal manually engineered features adopted by sgRNA de-
signer (denoted as “retrained sgRNA designer with manual
feature”). This model achieved an overall ROC-AUC of
0.778 (Fig. 2a, b, Additional file 2). Compared with these
two different feature representations, it is indicated that
the low-level feature encoding is not suitable for shallow
models; therefore, the retrained sgRNA designer achieved
better performance with manual domain-based feature en-
gineering and feature encoding. Nevertheless, these results
further indicate that the deep learning model can effi-
ciently learn the high-level feature representation from
low-level features and compete with the shallow models
by avoiding manual feature engineering for sgRNA design.
Secondly, we also performed a leave one cell type out

comparison of DeepCRISPR with retrained sgRNA de-
signer using our one-hot feature representation. The test
was performed on the same training and testing data as
those of testing scenario 4 (Fig. 2d, Additional file 2). It
can be seen that, on average, DeepCRISPR still outper-
formed retrained sgRNA designer, indicating its on-target
prediction superiority compared to other methods.

Testing scenario 6—regression schema
In this test, we further trained DeepCRISPR in a regres-
sion schema with the original numerical sgRNA

knockout efficacies. The data from different experiments
were integrated in an elegant way as demonstrated in
the “On-target data sources” section. The performance was
evaluated with Spearman correlation as adapted in former
studies [42]. The whole comparison was performed in a
similar way as in testing scenarios 3 and 5, except that the
model was trained in a regression way. Also the sgRNA de-
signer was retrained in a regression way with the same
training and testing data. It can be seen that in this case
DeepCRISPR still outperformed the other methods as eval-
uated by Spearman correlation (Fig. 2e, Additional file 2).

Testing scenario 7—regression schema
We further tested the regression-based DeepCRISPR in a
leave one cell type out way to investigate its
generalization ability in new cell types, similar to test
scenario 4. For this case DeepCRISPR achieved similar
performance to those in a classification schema and out-
performed the other methods as evaluated by Spearman
correlation (Fig. 2f, Additional file 2).

Testing scenario 8—regression schema on an independent
dataset
Since all the former tests (scenarios 1–7) were per-
formed on the four cell types (hct116, hek293t, hela, and
hl60) by separating the data for training and testing, in
this case we applied an additional dataset which was to-
tally independent of our former tests to investigate the
on-target prediction performance of DeepCRISPR. This
dataset, reported recently by utilizing fluorescent re-
porter knock-out assays with verification at selected en-
dogenous loci for sgRNA knockout efficacy
measurement, contains a total of 425 sgRNAs for HEL
cells [43]. Both the cell type and data distribution are
different to our former tests, and the sgRNAs do not
overlap the former datasets. Therefore, it can serve as an
ideal independent testing dataset to investigate the
generalization ability of DeepCRISPR. In this test, we
retrained DeepCRISPR with only sequence-level features
on the original four cell type datasets, since the epigen-
etic features of the tested HEL cell type are not available
in ENCODE. The retrained DeepCRISPR model was
tested on this HEL cell data and compared with sgRNA
designer, SSC, sgRNA scorer, and CRISPRator. Surpris-
ingly, DeepCRISPR not only significantly outperformed
sgRNA designer, the current state-of-the-art on-target

(See figure on previous page.)
Fig. 2 Evaluation of DeepCRISPR for on-target efficacy prediction. a, b Comparison of sgRNA on-target efficacy predictions in a classification schema for
various datasets, i.e., hct116 cell line, hek293t cell line, hela cell line, hl60 cell line, and the overall testing dataset. c Comparison of training loss for two
different DeepCRISPR classification models. d Leave cell type out comparison of sgRNA on-target efficacy prediction in a classification schema. e
Comparison of sgRNA on-target efficacy predictions in a regression schema for various datasets, i.e., hct116 cell line, hek293t cell line, hela cell line, hl60
cell line, and the overall testing dataset. f Leave cell type out comparison of sgRNA on-target efficacy prediction in a regression schema. g Comparison
of sgRNA on-target efficacy predictions in an independent dataset with Spearman correlation
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prediction tool, with a nearly twofold improvement mea-
sured with Spearmen correlation, but also outperformed
CRISPRator, which is designed specifically for this HEL
cell dataset [43] (Fig. 2g, Additional file 3). This inde-
pendent test further indicates that DeepCRISPR has good
generalization ability for unseen data, even without the
contribution of cell type-specific features.
In summary, for both the classification and regression

models, DeepCRISPR generally outperformed alterna-
tives for on-target prediction as measured by ROC-AUC
and Spearman correlation. Also, it has a good cell type
generalization ability. In addition, it can be seen that the
amount of training data influences model performance,
and the potential of deep learning models can be
boosted with larger amounts of training data.

Evaluation of DeepCRISPR for whole-genome sgRNA off-
target profile prediction
We next evaluated the ability of DeepCRISPR to predict
off-target sites. For this purpose, we curated the human
sgRNA whole-genome off-target profile data detected by
GUIDE-seq,Digenome-seq, BLESS, HTGTS, and IDLV.
These data include 30 sgRNAs from two different cell
types: the HEK 293 cell line and its derivatives (18
sgRNAs) [6, 22, 24–27], and K562 t (12 sgRNAs) [44],
accounting for ~ 160,000 possible loci with a maximum
of six nucleotide mismatches (see the “Off-target data
sources” section).We also formulated DeepCRISPR in a
classification and a regression schema for a comprehen-
sive and rigorous comparison. For the classification
model, the off-target sites are labeled as “1” and the
others are labeled as “0” (see the “Off-target data
sources” section). For the regression model, the
off-target sites are labeled with the targeting efficacies
measured with indel frequency detected by different as-
says (see the “Off-target data sources” section). Then
three different testing scenarios were designed for
off-target profile prediction evaluation.

Testing scenario 1
We withheld 20% of the data for each cell type as an in-
dependent testing set. The remaining 80% of data were
combined together to train our model and tune the pa-
rameters during the cross-validation process. Because
the whole dataset was highly unbalanced with ~ 700 true
off-target sites, an efficient bootstrapping sampling algo-
rithm was adapted in the training procedure to alleviate
the data imbalance (see the “Integrating bootstrapping
into batch training of deep neural networks to address
the data imbalance issue” section). As a result, our final
trained off-target site prediction model was tested on
the independent datasets for each of the two cell lines
and compared with four of the current state-of-the-art
off-target site prediction tools, CFD score [2], MIT score

[6], CROP-IT [45], and CCTop [46].These tools were de-
signed for human sgRNA off-target site prediction using
various empirically defined off-target scores. Since the
whole dataset is unbalanced, the comparison was evalu-
ated using AUC values from the ROC and
precision-recall curve for the classification model, and
Spearman correlation and weighted Spearman correl-
ation [42] for the regression model. For a maximum of
six nucleotide mismatches, the testing results indicated
that DeepCRISPR outperformed all four methods in the
two cell types (Fig. 3a-c, Additional file 2). Overall,
DeepCRISPR achieved an ROC-AUC of 0.981(Fig. 3a),
PR-AUC of 0.497(Fig. 3b), Spearman correlation of 0.133
(Fig. 3c) and weighted Spearman correlation of 0.186
(Fig. 3c), outperforming the second-best method, i.e., the
CFD score [2] (Fig. 3a-c).
It is worth noting that the improvement in off-target

prediction with DeepCRISPR is a relatively small margin
when compared with the CFD score evaluated with
ROC-AUC since the CFD score had already achieved
high performance; nevertheless, such improvement is
very important since near-zero off-targeting is the ultim-
ate goal for all CRISPR-based gene therapies. Also, it
should be noted that all the existing tools, including
DeepCRISPR, tend to avoid missing true off-target cleav-
age sites by weighting higher on positive samples. This
also makes sense for CRISPR-based gene therapy, as the
penalty of missing a true off-target site is always higher
than that of inducing a false positive in off-target site
prediction. That is why we adopted the weighted Spear-
man correlation proposed by Listgarten et al. [42] to ad-
dress such weight asymmetry issues. The weight for
each off-target site is set proportional to its rank order
according to the corresponding knock-out efficacy mea-
sured by indel frequency. Nevertheless, such a weighting
schema is actually a compromise for false positives.
Therefore, reducing false positives purely from un-
weighted data is still required and is very challenging.
For this case, it can be seen that DeepCRISPR greatly im-
proved the PR-AUC value compared to the other
methods, indicating that DeepCRISPR can dramatically
reduce the false positives during off-target prediction..

Testing scenario 2
In this scenario, for all the 30 sgRNAs from two differ-
ent cell types, we performed a “leave sgRNA group out”
test, which is a more representative use case for
off-target profile detection. Such a test randomly holds a
group of sgRNAs out (in our case three sgRNAs were
held out) as testing data, presenting an estimate of the
predictive performance on a group of unseen sgRNAs
(Fig. 4a). It ensures that the off-target guides for one
sgRNA are either entirely in the test or training sets. In
this case, for both classification and regression models,

Chuai et al. Genome Biology  (2018) 19:80 Page 8 of 18



Fig. 3 Evaluation of DeepCRISPR for off-target profile prediction. a Comparison of sgRNA off-target profile predictions in a classification schema for
various datasets, i.e., 293-related cell types and K562 cell line with a maximum of six mismatches. The performance was evaluated with ROC-AUC. b
Comparison of sgRNA off-target profile predictions in a classification schema for various datasets, i.e., 293-related cell types and K562 cell line with a
maximum of six mismatches. The performance was evaluated with PR-AUC. c Comparison of sgRNA off-target profile predictions in a regression
schema for various datasets, i.e., 293-related cell types and K562 cell line with a maximum of six mismatches. The performance was evaluated with
Spearman correlation. d Comparison of sgRNA off-target profile predictions in a regression schema for various datasets, i.e., 293-related cell types and
K562 cell line with a maximum of six mismatches. The performance was evaluated with weighted Spearman correlation
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DeepCRISPR achieved an average ROC-AUC of 0.804,
PR-AUC of 0.303, Spearman correlation of 0.201, and
weighted Spearman correlation of 0.246 (Fig. 4a, Add-
itional file 2). The ROC-AUC for DeepCRISPR is com-
parable to the result with CFD score, while other
measurements, especially the PR-AUC (0.303), are sig-
nificantly higher than with CFD score (0.034), indicating
that DeepCRISPR can help to reduce false positives for
unseen sgRNAs in off-target prediction.

Testing scenario 3
In this scenario, for all 30 sgRNAs, we performed
30-fold leave one sgRNA out testing, which is an ex-
treme case of the leave sgRNA group out test as shown
in testing scenario 2 (Fig. 4b). For both classification and
regression models, DeepCRISPR achieved an average
ROC-AUC of 0.841, PR-AUC of 0.421, Spearman correl-
ation of 0.132, and weighted Spearman correlation of
0.181 (Fig. 4b, Additional file 2). In this case, the
ROC-AUC of DeepCRISPR is comparable to the result
from CFD score, while other measurements, especially
PR-AUC (0.421), are higher than with CFD score (0.333).
In summary, for both classification and regression

models, DeepCRISPR generally outperformed CFD score,
especially with improved performance to reduce false

positives in the highly imbalanced off-target prediction.
One thing to note is that the classification model is
more suitable for off-target prediction compared to the
regression model since in this case we only care about
distinguishing off-target sites among others rather than
predicting their binding affinities. In addition, the regres-
sion model is more sensitive and thus requires more
data to train it. The current version of DeepCRISPR has
only been trained on limited samples as a prototype
study. We are expecting to boost DeepCRISPR with
more training samples, taking full advantage of deep
models compared to shallow models.

Automating feature identification in a learning
schema
We intended to automate the whole feature identifica-
tion procedure purely based on the available training
data and the learning model. It should be noted that fea-
ture identification and visualization based on shallow
learning models have been extensively addressed, and
numerous works have been presented to select features
for in silico sgRNA design [1, 2, 5]. However, feature
identification and interpretation for deep learning
models is non-trivial and worthy of exploration. In our
study, we present a computational method to derive the

Fig. 4 a Leave sgRNAs group out comparison of sgRNA off-target efficacy prediction with ROC-AUC, PR-AUC, Spearman correlation, and weighted
Spearman correlation. b Leave sgRNA out comparison of sgRNA off-target efficacy prediction with ROC-AUC, PR-AUC, Spearman correlation, and
weighted Spearman correlation. The error bars in Fig. 4b indicate the variances of the average performances in different tests
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feature saliency map for efficient sgRNA design with
optimization [47] based on the trained deep learning
model. We allow the trained deep neural network model
to tell us what the efficient sgRNAs look like compared
to inefficient sgRNAs (see the “Feature identification by
deriving a class-specific feature saliency map” section).
We first generated the feature saliency map for sgRNA

on-target site prediction based on the existing training
data, as shown in Fig. 5a. We obtained a feature saliency

map consistent with previous findings: (1) it has the
same preferences in the variable nucleotides of the PAM
NGG for high efficacy sgRNA, where cytosine is favored
and thymine is disfavored. This is consistent with exist-
ing in vitro and in vivo studies [1, 2]. (2) Thymines are
disfavored at the four positions closest to the PAM, con-
sistent with the fact that multiple uracils in the spacer
lead to low sgRNA expression [1]. (3) Position 18 has a
consistent preference for cytosine, which is the DNA

Fig. 5 Automatic learning sequence and epigenetic features affecting sgRNA on-target and off-target design. a Feature saliency map for
sgRNA on-target design. b Transformation of the representations of nucleotide substitution between the saliency map and traditional heatmap.
Hyphens in both maps indicate that the impact of the nucleotide substitution at this position is not statistically significant by a Fisher’s exact test.
c Averaged nucleotide substitution saliency map for sgRNA off-target design. Three nucleotide substitution zones are clearly identified. d Two
representations for single nucleotide substitution (see the “Feature identification by deriving a class-specific feature saliency map” section
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cleavage site of CRISPR system [5, 37]. (4) It has a gen-
eral preference for an open chromatin structure, as indi-
cated by the feature saliency map of CTCF, DNase, and
H3K4me3. (5) It has a relatively avoidance of DNA
methylation for high sgRNA efficacy, as shown by the
RRBS assay. This is consistent with a recent study ex-
ploring various features for CRISPR off-targets [28]. In
summary, nucleotide preferences at specific positions
coupled with an open chromatin structure are preferred
for optimized sgRNA on-target design.
For off-target site prediction, a detailed feature sali-

ency map for 16 possible nucleotide substitutions across
20 positions is presented, by filtering those points with-
out statistical significant using a Fisher statistical test
(Fig. 5b; see the “Feature identification by deriving a
class-specific feature saliency map” section). We also
generated an averaged nucleotide substitution rate map
to indicate their effect on the occurrence of off-target
cleavage (Fig. 5c; see “Feature identification by deriving a
class-specific feature saliency map” section). We divided
this feature map into three nucleotide substitution
zones, i.e., off-target preference zone (positions 1–3), un-
determined zone (positions 4–15), and off-target avoiding
zone (positions 16–20). Although this map was obtained
from limited samples, we observed that the nucleotide
mutations occurring near the PAM are prone to avoid
off-target sites in a position and nucleotide
identity-dependent manner. This is consistent with pre-
vious findings that changing the nucleotides far from the
PAM usually has little effect on sgRNA efficacy [2, 6].
Previously, two different groups performed extensive in
vitro tests on human EMX1 and CD33 genes to generate
different guide RNAs containing possible
single-nucleotide substitutions for off-target studies.
Their study indicated that SpCas9 tolerates single-base
mismatches in the PAM distal region to a greater extent
than in the PAM proximal region [2, 6].
Specifically, the learned feature map (Additional file 4)

gave results consistent with previous studies and new
findings. DeepCRISPR identified a preference for purine:-
purine mismatches to avoid off-target sites with statis-
tical significance, including the substitution
G->C(corresponding to rG:dG in a traditional heatmap,
as previously reported [2]) and substitution G->T (corre-
sponding to rG:dA in a traditional heatmap) at position
16. Kinetic studies of CRISPR dynamics in living cells
also proved that the purine and purine mismatches at
position 16 radically reduce binding affinity and dimin-
ish cleavage activities [48]. Besides these consistent find-
ings, our feature saliency map identified five nucleotide
substitutions preferring off-targets in the off-target pref-
erence zone and eight nucleotide substitutions avoiding
off-targets in the off-target avoiding zone (Fig. 5b, c), in-
cluding the two nucleotide substitutions G->C and

G->T at position 16 [48]. Future validation of these nu-
cleotide substitutions based on large-scale off-target data
is expected and the identified factors will become more
accurate with more off-target data in the future.
The interpretation of Fig. 5b is different from that of

previous studies, which is explained in the "Feature iden-
tification by deriving a class-specific feature saliency
map" section.

Discussion and conclusions
Here we present DeepCRISPR, an efficient and extend-
able computational model for simultaneous prediction
of CRISPR sgRNA on-target knockout efficacy and
whole genome off-target profiles. DeepCRISPR surpassed
the state-of-the-art tools across a variety of human data-
sets with solid evaluation metrics. Importantly, our re-
sults indicate that leveraging genome-wide unlabeled
sgRNA sequences as well as a deep learning model helps
to efficiently learn sgRNA representations and boost the
prediction performance. In addition, DeepCRISPR auto-
mates the feature identification for sgRNA design in a
data-driven manner, facilitating interpretation and opti-
mized CRISPR on-target and off-target design.
A number of future improvements are expected: (1)

currently we have designed only a relatively simple and
concise unsupervised pre-training and CNN-based deep
neural network model. Various complex and modern
deep learning architectures await exploration in the fu-
ture; these models are expected to improve our current
prediction performance. Nevertheless, the main goal of
this study is to provide a prototype and applying more
sophisticated deep learning models is encouraged in the
future. (2) Manual design of proper sgRNA features will
definitely help to boost the sgRNA efficacy prediction,
although this is not our main goal here. In our study, we
use only the low-level one-hot feature encoding sgRNA
representations, and we want to show the prediction
ability of deep learning models rather than the contribu-
tion of feature engineering. Future directions can com-
bine feature representation learning and feature
engineering for improved prediction performance. (3)
On-target training data may contain noise. The pub-
lished sgRNA screens may not exactly measure the
sgRNA knock-out efficacy, which may be taken as a con-
founding effect waiting to be further explored. Neverthe-
less, several efforts have been made to improve the
knockout measurements [12, 43]. Our independent val-
idation of the refined sgRNA on-target dataset utilizing
fluorescent reporter knock-out assays [43] also indicated
that DeepCRISPR surpassed other current methods
(Fig. 2g). Further improved prediction model building
with more accurate knockout labels is expected. (4) For
off-target prediction, different off-target assays may have
different sensitivities. The assays likely do not capture
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the full space of off-target cleavage sites. Compared to
on-target prediction, this might be inherently difficult
since the current off-target raw datasets are not solid.
Furthermore, the amount of off-target raw data might be
less sufficient than the datasets for on-target prediction.
In our study we integrated data from different off-target
detection platforms and such a data collection schema is
currently well-accepted [1, 5].
The main point of our current study is to present

DeepCRISPR as the first prototype model that demon-
strate the utility of deep learning for optimized sgRNA
design. Nevertheless, better noise-free off-target data are
waiting to be accumulated. Higher sensitive off-target
detection techniques are expected to be developed. Our
models can be trained based on these data for improved
CRISPR off-target prediction in the future.
In addition, the amount of available sgRNA knockout

data is relatively small, which provides a challenge for
training a routine deep learning model. A common con-
cern with deep models is that they can overfit the train-
ing data [31]. Therefore, besides the previous collection
of genome-wide sgRNA sequences for unsupervised rep-
resentation learning, we carefully designed a hybrid deep
network incorporating several other techniques: (1) an
efficient data augmentation technique to increase the
training sample size; (2) fine-tuning-based improvement
of the model’s generalization ability; and (3) efficient
batch normalization [31, 32] techniques to avoid overfit-
ting. By using these techniques, we surpassed the
current state-of-the-art tools, both in on-target and
off-target site prediction. On the other hand, we are an-
ticipating a rapid increase in the amount of CRISPR gen-
ome editing data due to the booming popularity of this
new technique. For this reason, the performance of
DeepCRISPR is expected to be enhanced with the avail-
ability of more training data, taking advantage of this
powerful deep learning framework. This is a superior
feature of DeepCRISPR compared with shallow learning
models [32]. We believe that future insights from the
deep learning community as well as the data accumula-
tion in the genome editing community will lead to en-
hancements of DeepCRISPR and CRISPR-based gene
editing analysis generally.

Methods
Data collection and processing
On-target data sources
The initial on-target dataset contains seed sgRNAs with
experimentally validated known knockout efficacy, com-
prising ~ 15,000 sgRNAs containing 1071 genes from
four different cell lines (hct116 [36], hek293t [2], hela
[36], and hl60 [37]) with redundancy removed. The
sgRNA knockout efficacy measurements were restricted
to experimental assays, where the efficacy is defined as

the log-fold change in measured knockout efficacy. We
excluded any other readouts of knockout measurements
without in vivo or in vitro experimental validation, such
as sequence-based readouts of the frameshift ratio, as
their correlations with the true knockout efficiency are
unclear [15]. For classification models, we converted
sgRNA efficacy to a binary value using a log-fold change
of 1 as the cutoff. Such label categorization was also ap-
plied previously [5]. For regression models, we adopted a
collaborative filtering-based data normalization method,
borrowing the idea from the user-item recommendation
system [49, 50]. Specifically, a matrix Y is formulated
where each row represents one of the experiments and
each column represents one sgRNA. yij indicates the jth
sgRNA knock-out efficacy in the ith experiment. First,
three types of mean value are calculated, namely, mean
values for each row, mean values for each column, and the
mean value of the whole matrix. Then the normalized
on-target efficacy values ynorm for yij are obtained by sub-
traction of the original on-target efficacy values and the
weighted sum of mean values from the related row
(mrow) and column (mcolumn) as well as the whole matrix
(mall), which is shown in the following formula:

ynorm ¼ yij− mrow þmcolumn þmallð Þ=3 ð1Þ

After calculating the normalized on-target efficacy
values integrated from different experiments, a
rank-based normalization [2] is performed to obtain the
final numerical labels (Additional file 5).

Off-target data sources
The off-target profile dataset contained two different cell
types: 293-related cell lines (18 sgRNAs) and K562 t (12
sgRNAs) [6, 22, 24–27, 44]. For all 30 sgRNAs, we ob-
tained ~ 160,000 possible loci across the whole genome
using bowtie2 [51], with a maximum of six nucleotide
mismatches. The whole dataset was highly unbalanced,
and nearly 1/250 loci was identified as an off-target site
(one mismatch, 4; two mismatches, 31; three mis-
matches, 121; four mismatches, 236; five mismatches,
174; six mismatches, 75) with various whole genome
off-target detection techniques [22–27] (Additional files 6
and 7). For the classification model, the off-target sites
are labeled as “1” and the others are labeled as “0”. For the
regression model, the off-target sites are labeled and nor-
malized with the targeting cleavage frequency (indel fre-
quency) detected by different off-target detection assays.

sgRNA encoding with genome and epigenetic features
We formulated an efficient image-like coding scheme to
encode a DNA region which contains both nucleotide
sequence and epigenetic information. The aim was to
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consider epigenetic information by representing different
DNA regions from different cell types with a unified fea-
ture space. These epigenetic features included CTCF
binding information from the ChIP-Seq assay, H3K4me3
position information from the ChIP-Seq assay,
chromatin-opening information from the DNase-Seq
assay, and DNA methylation information from the RRBS
assay, obtained from ENCODE [52]. In our study, we
treated a DNA region as a one-row multi-channel pic-
ture. For a conventional colored picture, each pixel has
three values, namely, red, green, and blue from three
channels. For a DNA region “picture”, the nucleotide se-
quence is represented by four channels, i.e., the
A-channel, C-channel, G-channel, and T-channel, and
each epigenetic feature is considered as one channel. As
a result, we obtained an eight-channel representation of
each DNA region (Fig. 1a). Based on this encoding
schema, the current version of DeepCRISPR supports
genome-wide sgRNA efficacy prediction for 13 human
cell lines (HEK293, MCF-7, K562, HL60, NB4, BE2C,
Caco-2, GM06990, Hela, HCT116, LNCap, HepG2, and
GM12878) with all required epigenetic information. It
can be easily extended to other cell types if the required
epigenetic information is provided.

Data augmentation for on-target dataset
The final on-target dataset was generated in a data aug-
mentation manner like that used in image data process-
ing. Considering that sgRNA with two mismatches in
the first two positions from the 5′ end commonly has
no effect on cleavage efficacy [1, 2], we extended the ori-
ginal seeds by changing each one into a new sgRNA with
two mismatches in the PAM distal region. These newly
generated sgRNAs with the same epigenetic profiles had
identical efficacy labels to those of the seeds. This aug-
mentation resulted into ~ 0.2 million non-redundant
sgRNAs with biologically meaningful knockout efficacies
for the training process (Additional file 8).

Deep learning techniques
DCDNN-based autoencoder for representation learning
DeepCRISPR uses a deep convolutionary denosing neural
network (DCDNN)-based autoencoder to learn the
underlying representation of sgRNA regions, which con-
tain both the DNA nucleotide sequence and epigenetic
information. The autoencoder has an encoder and a de-
coder, which are in sequential order. Optimization of the
autoencoder during training results in the underlying
representation of the given sgRNAs [35]. In our study,
the input of DeepCRISPR comprises all the sgRNA re-
gional information of the whole human genome from 13
cell types collected from ENCODE [52], which accounts
for over ~ 0.68 billion data samples (Fig. 1c). Detailed
network descriptions are in Additional file 9.

CNN model with pre-training-based fine-tuning
Followed by the DCDNN-based autoencoder for sgRNA
representation learning, DeepCRISPR adopted a fully
convolutional neural network (CNN) model for predict-
ing sgRNA efficacy (Fig. 1b-d). DeepCRISPR applies a
fine-tuning strategy to train the model by utilizing an
autoencoder-based model to be part of the classifier and
then tune the whole classifier with labeled data. The
general information learned by large-scale unlabeled
data can be used to boost the prediction performance.
Specifically, we used the encoder part of the
DCDNN-based autoencoder as the pre-trained model.
For on-target prediction, it contains the pre-trained
DCDNN-based encoder as well as the CNN layers, and
its input is the sgRNA regional information data. For
off-target prediction, it contains two pre-trained
DCDNN-based encoders, one merged layer, and CNN
layers. The input for the off-target prediction comprises
two parts: target sgRNA regional information data and
off-target sgRNA regional information data. Each part is
fed into a pre-trained DCDNN-based encoder and then
their results are merged. The merged result is fed into
the CNN layers to predict off-target sites (Fig. 1b-d). De-
tailed network descriptions are in Additional file 9.

Integrating bootstrapping into batch training of deep
neural networks to address the data imbalance issue
During the training for off-target site prediction, the
data were highly unbalanced, i.e., the ratio of known
off-target sites and negative off-target sites was approxi-
mately 1:250. Highly unbalanced data will probably make
the gradient update unstable and eventually cause the
model training to fail. To deal with this issue, Deep-
CRISPR applied a bootstrapping method to the
mini-batches during the training process [32]. A similar
idea has also been applied in related shallow learning
models [28]. The basic idea of this method is to perform
bootstrapping sampling from the minor samples and ob-
tain the same amount of samples as major samples at
the same time in mini-batches. This strategy ensures
that the mini-batches have the same amount of positive
samples and negative samples, thus avoiding gradient
update instability and substantially boosting the predic-
tion performance (Fig. 6).

Feature identification by deriving a class-specific feature
saliency map
We generated positive class-specific saliency maps for
on-target and off-target models (Fig. 4).Given the
learned model DeepCRISPR and a class of interest (the
class of efficient sgRNAs), feature identification is
achieved by numerically generating a “synthetic sgRNA”,
which is representative of the class in terms of the Deep-
CRISPR scoring model. Formally, let Sc(g) be the score of
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the class c, computed by DeepCRISPR for a guide RNA
g; we would like to find an optimized sgRNA, such that
the score Sc is high:

argmaxgSc gð Þ ð2Þ

A locally optimal g can be found by a gradient ascent
method with eq. (1). The basic idea is that we just let
the model learn to determine the dominant features
based on the training samples related to a specific class.
It maximizes the model output with respect to input and
the calculated input reveals the optimized result [47].
For the on-target model, the trained deep neural net-
work model just tells us what the efficient sgRNAs look
like compared to inefficient sgRNAs. For the off-target
model, the trained deep neural network model tells us
what a pair sample, i.e., <a given sgRNA, off-target>
looks like. This is particularly helpful for us to derive the
single nucleotide substitution saliency map (Fig. 5b). To
better understand the off-target site prediction model,
we integrated the saliency maps into one substation level
map (Fig. 5c). Because the number of target sgRNAs for
the off-target model is relatively small, we also per-
formed a Fisher’s exact test to test the significance of the
impact on off-target sites for every nucleotide substitu-
tion at different positions [53].
The interpretation of Fig. 5b is presented in the fol-

lowing: (1) traditional experimental studies often fix the
DNA locus and generate different sgRNA mutants with
single nucleotide substitutions to investigate their effect
on cleavage efficacy. In our study, taking advantage of
the two-channel encoding for off-target site prediction

mentioned above, the model for off-target interpretation
is learned as a whole from the training data. It considers
the original sgRNA simultaneously with its correspond-
ing detected off-target sites with nucleotide substitutions
occurring at different positions. Thus, we can directly
infer the impact of nucleotide substitution on off-target
prediction. The epigenetic information should also be
considered together with nucleotide substitution to in-
vestigate the effect on cleavage efficacy. (2) A transform-
ation is carried out to compare our saliency map with
the traditional heatmap for feature identification, as ex-
plained in Fig. 5d. The traditional experimental method
uses a fixed DNA locus and investigates the binding
cleavage efficacy for different sgRNAs with a nucleotide
substitution at this locus [2, 6]. Our data-driven model,
on the other hand, fixes the given sgRNA by generating
different off-target sites detected by whole-genome pro-
filing. The cleavage efficacy for a given fixed sgRNA on a
different off-target locus is explored. For this reason,
rG:dG as presented in a traditional heatmap can be re-
ferred to as the G->C substitution presented in our sali-
ent map (Fig. 5d). (3) Our data-driven procedure relies
on existing training data. If the training data do not
cover sufficient substitution samples in a specific pos-
ition, the model will generally filter out such features.

Visualization of the off-target profile using Circos plot
We built an integrated web tool, DeepCRISPR, to unify
human sgRNA on-target knockout efficacy prediction
and off-target profile prediction in one framework. The
DeepCRISPR platform has the following functions: (1)
for a given sgRNA, DeepCRISPR accurately predicts its

Fig. 6 Bootstrapping sampling for sgRNA off-target site prediction. The bootstrapping sampling is performed from the minor samples to obtain
the same amount of samples as major samples in each mini-batch
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possible knockout efficacy at the corresponding DNA
loci using a classification model; (2) for a given sgRNA,
DeepCRISPR discovers its possible genome-wide
off-targets and predicts their potential off-target cleavage
efficacies using a classification model.
We also noticed that several tools have assigned a

summary off-target score to describe the off-target level
of a given sgRNA [2, 6, 42]. In our study, we also defined
the “anti-OT score”, whose range is (0, 1]:

S ¼ ln 1þ e
P

OTið Þ
� �

= ln 2 ð3Þ

where ∑() denotes the summation of the occurrence
probability of a potential off-target candidate OTi of a
given sgRNA. A sgRNA having a higher anti-OT score
over another means that this sgRNA has a lower prob-
ability to have off-target cleavage across the whole
genome.
In addition, we also provide a graphical demonstration

by visualizing the overall genome-wide off-target profile
of a given sgRNA with a Circos plot [54]. From the inner
circle to the outer circle, different colors (green, yellow,
and red) represent different off-target levels (mild, mod-
erate, and severe) (Fig. 7). Such a visualization presents
an intuitive way for users to access and evaluate the
summary off-target profile of a given sgRNA.

Additional files

Additional file 1: A comprehensive list of hypothesis-based and
learning-based sgRNA on-target design tools and the selected candidates
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BLESS: Direct in situ breaks labeling sequencing; CNN: Convolutional neural
network; HTGTS: High-throughput genome-wide translocation sequencing;
IDLV: Integration-deficient lentiviral vector capture; OT: Off-target;
PAM: Protospacer adjacent motif; sgRNA: Single-guide RNA

Fig. 7 A Circos plot example visualizing the off-target profile of a given sgRNA (GCCTCTTTCCCACCCACCTTGGG) in the HEK293t cell type
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