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Model-based understanding of single-cell CRISPR
screening
Bin Duan1,2, Chi Zhou1, Chengyu Zhu1, Yifei Yu1, Gaoyang Li3,4, Shihua Zhang 5, Chao Zhang1, Xiangyun Ye6,

Hanhui Ma7, Shen Qu1, Zhiyuan Zhang8, Ping Wang3,4, Shuyang Sun8 & Qi Liu1,2

The recently developed single-cell CRISPR screening techniques, independently termed

Perturb-Seq, CRISP-seq, or CROP-seq, combine pooled CRISPR screening with single-cell

RNA-seq to investigate functional CRISPR screening in a single-cell granularity. Here, we

present MUSIC, an integrated pipeline for model-based understanding of single-cell CRISPR

screening data. Comprehensive tests applied to all the publicly available data revealed that

MUSIC accurately quantifies and prioritizes the individual gene perturbation effect on cell

phenotypes with tolerance for the substantial noise that exists in such data analysis. MUSIC

facilitates the single-cell CRISPR screening from three perspectives, i.e., prioritizing the gene

perturbation effect as an overall perturbation effect, in a functional topic-specific way, and

quantifying the relationships between different perturbations. In summary, MUSIC provides

an effective and applicable solution to elucidate perturbation function and biologic circuits

by a model-based quantitative analysis of single-cell-based CRISPR screening data.
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Pooled CRISPR knockout screening is a powerful technique
for evaluating the biologic function of genes. This techni-
que, however, only recognizes genes with very distinct

phenotypes, such as those that affect cellular growth substantially
or can be detected with antibodies or fluorescent protein repor-
ters directly, which limited its ability to detect other genes with
subtle phenotypes1–3. Recently described novel methods, i.e.,
single-cell-based CRISPR knockout or knockdown screening
(independently termed Perturb-Seq4,5, CRISP-seq6, and CROP-
seq7,8), combine pooled CRISPR screening with single-cell RNA-
seq to investigate functional CRISPR screening in a single-cell
level. These screening methods make it possible to implement
large-scale gene perturbation study in a more elaborated way.

The key technical innovation for single-cell CRISPR screening
including Perturb-Seq4,5, CRISP-seq6, or CROP-seq7,8 lies in
modifying the lentiviral vector to allow for identification of the
sgRNA in a single cell from deep-sequencing of mRNAs (poly-
adenylated RNA fraction)3. By taking advantage the innovation in
performing mRNA-seq on individual cells, large-scale cells with
distinct perturbations within a heterogeneous cell population can
be investigated3,9.

Several computational challenges exist in the analysis of such
single-cell CRISPR screening data: (1) Data sparsity and noise.
Single-cell RNA-seq data is sparse10,11. In addition, both single-
cell RNA-seq data and pooled CRISPR screening data are
inherently noisy12,13, and this is further exacerbated by their
combination. Efficient data filtering and normalizing are needed
to meet these challenges. (2) The sgRNA perturbation and off-
target effect should be carefully investigated when linking such
perturbations with the gene expression readout14,15, particularly
for heterogeneous cell-to-cell comparisons. (3) Quantitative and
parallel estimating and prioritizing the effect of each perturbation
and their relationships on different cells with cellular hetero-
geneity and technical complexity is required, and (4) Intuitively
visualizing the perturbation results at a large-scale heterogeneity
cellular level is needed. To this end, we developed MUSIC, which
is an integrated tool for model-based understanding of single-cell
CRISPR screening. This is an easy-to-use and model-based
integrated analytical tool designed specifically for single-cell
CRISPR screening data analysis.

Results
General pipeline of MUSIC. MUSIC comprises three steps for
single-cell CRISPR screening data analysis (Fig. 1): data pre-
processing, model building, and perturbation effect prioritizing.

In the first step (Fig. 1 and see Methods), besides the
routine quality control and data normalization processes applied
in single-cell RNA-seq analysis, MUSIC also applied a data
imputation step (achieved by SAVER16) to improve the data
quality. In addition, MUSIC addresses two issues that should
be taken into account for such a novel data type: (1) Filtering
perturbed cells with invalid edits; (2) Filtering perturbations
according to a minimal number of cells per perturbation.

Second, MUSIC builds a computational framework based on
Topic Models to handle single-cell CRISPR screening data (Fig. 1
and see Methods). The concept of topic models was initially
presented in the machine-learning community17 for discovery
of hidden semantic structures in a text body and has been
successfully applied to gene expression data analysis18–20.
Intuitively, given that a document is about a particular topic,
one would expect particular words to appear in the document
more or less frequently. The topics generated by topic modeling
are represented by class of words with similar sematic meanings.
A topic model is a probabilistic framework formulated on the
investigation of the giving documents and discovering their

topic profiles based on such word frequency representations. By
analogy to the single-cell CRISPR screening data, a single cell
with perturbation can be taken as a document. The gene
expression is analogous to the word frequency in the document.
A topic here represents a specific biological function associated
with a group of highly differential expressed genes. Therefore, a
topic model applied here allows us to examine a set of cells with
perturbations and discover, based on the gene expression in
each, what the perturbation induced biological functions might
be. Two key advantages of the topic model applied here are: (1) it
allows each perturbed sample to process a proportion of the
membership in each functional topic rather than to categorize the
sample into a discrete cluster. Such topic profile, which is derived
from large-scale cell-to-cell different perturbed samples, making
the following ranking of perturbation impact straightforward and
quantitative. As can be clearly illustrated in Fig. 2, compared with
traditional clustering, which makes a hard assignment of cells into
different subclasses, topic modeling just calculates a topic
probability profile for each sample rather than assigning it into
subclasses. (2) Topic modeling is sensitive to detect subtle
phenotype changes based on the change of topic probability
profile with and without perturbation, while traditional clustering
generally failed to detect such subtle phenotype changes, which
widely exist in single-cell CRISPR screening data (Fig. 2).

In addition, MUSIC addresses several specific issues when
applying the topic model to this specific data type: (1) The
distribution of topics between cases and controls is affected by
the ratio of their sample numbers, and such a sample imbalance
issue is addressed by the bootstrapping strategy when prioritizing
the perturbation effect (see Methods). (2) The optimal topic
number is automatically selected by MUSIC in a data-driven
manner (see Methods).

Finally, with the topic-model-based perturbation analysis,
MUSIC can quantitatively estimate and prioritize the individual
gene perturbation effect on cell phenotypes from three different
perspectives (Fig. 1 and see Methods), i.e., prioritizing the gene
perturbation effect as an overall perturbation effect, or in a
functional topic-specific way, and quantifying the relationships
between different perturbations.

Evaluating the performance of MUSIC. To evaluate the per-
formance of MUSIC, we made the following two aspects of
analysis. We started our study by applying MUSIC to all publicly
available 14 sets of single-cell CRISPR screening data, including
Perturb-Seq4,5, CRISP-seq6, and CROP-seq7,8 to obtain the ana-
lysis results (Supplementary Table 1). For illustration purposes,
we took the doxorubicin-treated MCF10A cells8 with 29 tumor
suppressors perturbed as an example plot (Fig. 3a, b). Detailed
analysis results of all the other datasets can be accessed in the
supplementary materials (Supplementary Data 1–14 and Sup-
plementary Fig. 1–14).

Then, we compared MUSIC with two other mentioned tools
MIMOSCA5 and LRICA4 (Tables 1 and 2). MIMOSCA is a
computational framework to handle multiple input multiple
output single-cell data analysis. LRICA is proposed to decipher
the driver signal/component of the data by low-rank matrix
factorization. Although MIMOSCA and LRICA models were
presented in the literatures, they were only developed as the
prototypes without executable and user-friendly implementa-
tions. In addition, the output of MUSIC is different from these
tools and they are not straightforward to be compared. Therefore,
we provided the preliminary comparison results in Tables 1–3 for
several datasets to indicate the effectiveness of MUSIC.

First, the comparisons between the analysis results of MUSIC
and MIMOSCA were presented in Table 1. MUSIC recapitulated
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the similar findings as those of MIMOSCA, like the perturbation
impact of Cebpb on immune cell activation21. A novel knockout
effect on cell migration22 was also identified by MUSIC which are
consistent with previous knowledge. MUSIC further identified the
gene–gene perturbation relationships, like the recognized associa-
tions between Cebpb knockout and other gene perturbations
by the quantitative correlation calculations (Table 1).

Second, similar comparisons between MUSIC and LRICA
were presented in Table 2. Again, MUSIC recapitulated similar
findings like LRICA. For example, ATF, PERK, and IRE1α are
all important proteins related to unfolded protein response
(UPR). Original study has indicated that the perturbation of
PERK has a greater impact than those of ATF6 and IRE1α.
MUSIC recapitulated this finding in a quantitatively way. In
addition, a novel perturbation effect for apoptosis function
by knockout the three genes simutaneously23 was identified,
which indicates that in the absence of the three branches of the
UPR, K562 cell enhance the positive regulation of apoptosis

signal pathway significantly (Supplementary Data 8 and Supple-
mentary Fig. 8).

Finally, analysis of remain datasets also recapitulated original
findings or identified novel results. Representative analysis results
by MUSIC on remain datasets are shown in Table 3. MUSIC
recapitulated the similar results as the original findings, such as
the perturbations of Cebpb has an important influence on
immune cell differentiation24. MUSIC further identified several
novel findings, such as the high correlation between Cebpb and
Rela25 perturbations (Supplementary Data 10). MUSIC identified
the special response of TP53 knockout when cells treated with
doxorubicin, which is consistent with previous knowledge26–28

(Fig. 3c).

Evaluating the impact of the data preprocessing strategies
adopted in MUSIC. Due to substantially noise existed in single-
cell CRISPR screening data, MUSIC adopted several data
preprocessing strategies (see Methods), which can effectively
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Fig. 1 General workflow of MUSIC. MUSIC comprises three steps for single-cell CRISPR screening data analysis: data preprocessing, model building,
perturbation effect prioritizing. In the 1st step, besides the conventional considering of cell quality, several specific factors existed for single-cell CRISPR
screening are also considered. These factors are the ratio of nonzero perturbed expression value in all cells, sgRNA efficiency and the minimal perturbed
cell number per perturbation. In the 2nd step, MUSIC applies a topic model-based computational framework to derive the functional topics of each cell
(including controls) with specific perturbation (PE, perturbation). In the 3rd step, MUSIC quantitatively estimates and prioritizes the individual gene
perturbation effect on cell phenotypes from three different perspectives, i.e., prioritizing the gene perturbation effect as an overall perturbation effect, or in
a functional topic-specific way, and quantifying the relationships between different perturbations
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improve its performance. In this part, we further explored their
impact on the outputs of MUSIC from the following three
aspects.

First, we provided an overview information on how many cells
are filtered from the datasets in the data preprocessing. A statistic
summary of the proportion of filtered cells by quality control
is shown in Fig. 4a, indicating that an average of 6% of cells
are filtered. A statistic summary of the proportion of filtered cells
by filtering low efficiency sgRNA is shown in Fig. 4b (Supple-
mentary Data 15). It can be seen that this step filtered an average
of 41% cells and these ratios are different in different datasets
and techniques. It should be noted that prior study already
indicated the single-cell CRISPR screening technique is very
noisy, 20–30% of the cells with a detected sgRNA show a wild-
type phenotype29,30 and these cells should be filtered.

Second, since the single-cell CRISPR screening data are noisy
and zero-inflated, we provided a statistic to show how frequently
genes have a zero expression value across all cells. And we
demonstrated that our filter strategy will not remove lowly
expressed while functional genes like transcription factors. To this
end, for all 326 knockouts/knockdowns in all 14 datasets, we
calculated their proportion of zero expression values in all cells,
which is denoted as the zero_rate of these genes (Fig. 4c and
Supplementary Data 16). It is found that that our filtering
strategy successfully filters CDKN2A in doxorubin-treated and
untreated MCF10A cell8, which is expected since MCF10A breast
epithelium cells carry a deletion of the CDKN2A locus. Then
only two other genes were filtered. These genes are PTPRD in
doxorubin-treated MCF10A cell8 and IER3IP1 in K562 cell4,
probably due to the noise existed in these datasets. These genes
are not transcription factors, and all the functional transcription

factors are kept to be unaffected. To further evaluate the impact
of this filtering on the results of MUSIC, we also performed
a test to check what occurs if MUSIC removed this filtering
step. We rerun MUSIC and compared the overall perturbation
effect ranking with or without zero expression filter for the
corresponding three affected datasets (doxorubin-treated and
untreated MCF10A and K563 cell). More specifically, we
normalized the overall ranking score (see the section of Obtaining
the overall perturbation effect ranking list in Methods) in the
obtained ranking list calculated with or without zero expression
filter. Then we calculated the Pearson correlation coefficients
of the normalized overall ranking score profiles with or without
zero expression filter. The Pearson correlation coefficients
calculated above were 0.99 for doxorubin-treated MCF10A,
0.93 for untreated MCF10A, 0.98 for K562 cell, respectively.
Taking together, these results showed that the filtering of zero
expression will not induce substantial changes on the overall
rankings, which means that the filtering of the corresponding
knockouts generally keeps other knockouts or knockdowns
unaffected.

Third, we evaluated the impact of imputation and filtering
strategies in the data preprocessing step on the final perturbation
ranking results. To this end, we took a group of genes tested by
Perturb-Seq5 as a benchmark, which indicated that Cebpb has
the strong reinforcing effect on Rela, Hif1a, Stat3 and Junb,
while keeps the strong opposing effect on Nfkb1, Runx1, Irf4 and
Spi1. The relationships available for these genes are so evident
that it is ideal to be taken as a golden standard. As shown in
Supplementary Table 2, a comparison with or without imputa-
tion/filtering were performed on this dataset. It can be seen
clearly that imputation and filtering as a whole can uncover such
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Fig. 3 An illustration result of MUSIC for single-cell CRISPR screening data analysis. We take the dataset of MCF10A cells treated with doxorubicin
(GSM2911346) by the updated version of CROP-seq8 as an example, as illustrated in (a, b). The overall perturbation effect ranking lists identified by MUSIC
were also compared between cells with different treatment, as illustrated in (c). a The functional annotations of each topic derived from topic modeling for
dataset GSM2911346. b The overall perturbation effect ranking list and the topic-specific perturbation effect ranking list for dataset GSM2911346. c The
differences of perturbation impact between different experimental conditions are demonstrated respectively for Perturb-Seq5 and CROP-seq7,8 data

Table 1 Comparisons of detail analysis results between MUSIC and MIMOSCA

Datasets Technology Demonstrated
perturbation

Output MIMOSCA MUSIC

Mouse BMDC
(3 h post-LPS,
GSM2396856)

Perturb-Seq5 Cebpb Overall
perturbation effect

— Rank 2nd

Topic-specific functional
perturbation effect

Immune cells activation • Immune cells activation21

• Cell migration22

Perturbations
relationship

• Cebpb and Nfkb1,
Runx1, Irf4, Spi1 have
opposing effects.

cor(Cebpb, Nfkb1)= -0.99
cor(Cebpb, Runx1)=−0.99
cor(Cebpb, Irf4)=− 0.99
cor(Cebpb, Spi1)=− 0.96

• Cebpb and Rela, HIF1a,
Stat3, Junb have
reinforcing activation.

cor(Cebpb, Rela)= 0.99 cor
(Cebpb, HIF1a)= 0.98 cor
(Cebpb, Stat3)= 0.99 cor
(Cebpb, Junb)= 0.93

Human K562 (7 days
post transduction,
GSM2396858)

Perturb-Seq5 GABPA Overall
perturbation effect

— Rank 2nd

Topic-specific functional
perturbation effect

Mitochondrial function • Heme metabolic process
• Neutrophil activation35

Perturbation relationship — cor(GABPA, ELK1)= 0.8936

Human K562 (cell
cycle regulators,
GSM2396861)

Perturb-Seq5 AURKA Overall
perturbation effect

— Rank 1st

Topic-specific functional
perturbation effect

Proliferation Proliferation

Perturbation relationship AURKA, TOR1AIP1, and
RACGAP1 perturbed
similar.

cor(AURKA, TOR1AIP1)= 0.70
cor(AURKA, RACGAP1)= 0.85
cor(TOR1AIP1, RACGAP1)= 0.75

cor(a,b) represents the Pearson correlation coefficient of topic distribution profile between perturbation a and perturbation b
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strong positive and negative correlations correctly and accurately.
We further made a global evaluation to access the overall impact
of the data preprocessing on all the datasets (Fig. 4d). In this
study, the overall impact is calculated as the overall perturbation
effect ranking correlation with or without imputation/filtering for
all the 14 datasets (Supplementary Data 17). More specifically, we
first normalized the overall ranking score (see the section of
Obtaining the overall perturbation effect ranking list in Methods)
in the obtained ranking list calculated with or without

imputation/filtering. Then we calculated the Pearson correlation
coefficients of the normalized overall ranking score profiles with
or without imputation/filtering. The bar plots of such similarity
comparisons are shown in Fig. 4d, indicating that how the
imputation_only, the filtering_only or their combinations affect
the final perturbation effect ranking as a whole. It can be seen that
all the three strategies changed the ranking list with a similarity of
~0.6 on average. Also the combination strategy changed the
ranking list mostly, which is expected.

Table 2 Comparison of detail analysis results between MUSIC and LRICA

Datasets Technology Demonstrated
perturbation

Output LRICA MUSIC

Human K562 (3 UPR
related genes,
GSM2406677)

Perturb-seq4 ATF6, PERK, IRE1α Overall perturbation effect — The three perturbations’
overall perturbation effect
ranks 1st

Topic-specific functional
perturbation effect

UPR • UPR
• Apoptosis23

Perturbation relationship The perturbation of PERK
has a greater impact than
those of ATF6 and IRE1α.

TPDS(PERK)= 94.0
TPDS(IRE1α)= 23.2
TPDS(ATF6)= 11.0

Human K562 (83 UPR
related genes,
GSM2406681)

Perturb-seq4 EIF2S1 Overall perturbation effect — Rank 1st

Topic-specific functional
perturbation effect

UPR UPR

Perturbation relationship — cor(EIF2S1, DHDDS)=
0.99

cor(a,b) represents the Pearson correlation coefficient of topic distribution between perturbation a and perturbation b
TPDS(a) represents the impact score to evaluate the overall perturbation effect of perturbation a

Table 3 Other representative analysis results of MUSIC

Datasets Technology Demonstrated
perturbation

Output Original study MUSIC

Mouse myeloid cell (GSE90486) CRISP-seq6 Cebpb Overall
perturbation effect

— Rank 1st

Topic-specific
functional
perturbation effect

Immune cell
differentiation

• Immune cell
differentiation24

• Cell migration22

Perturbation
relationship

— cor(Cebpb,Rela)=
0.9925

Human MCF10A cell (treated with
doxorubicin, GSM2911346)

Updated
version of
CROP-seq8

TP53 Overall
perturbation effect

— Rank 1st

Topic-specific
functional
perturbation effect

DNA replication DNA replication37

Perturbation
relationship

— cor(TP53, MLH1)=
0.99

Human Jurkat cell (stimulated by anti-
CD3/CD28,
GSM2439086~GSM2439090)

CROP-seq7 LCK Overall
perturbation effect

— Rank 6th

Topic-specific
functional
perturbation effect

TCR signature leukocyte
differentiation

Perturbations
Relationship

LCK, ZAP70, LAT have
similar effect on TCR
activation signature.

cor(LCK, ZAP70)=
0.93
cor(LCK, LAT)=
0.50
cor(ZAP70, LAT)=
0.78

cor(a,b) represents the Pearson correlation coefficient of topic distribution between perturbation a and perturbation b
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Discussion
In this study, we developed MUSIC, an integrated model-based
pipeline designed specifically for single-cell CRISPR screening.
MUSIC takes the raw counts data with the corresponding per-
turbation information as inputs and it can quantitatively estimate
and prioritize the perturbation effect for each knockout or
knockdown from three different perspectives, i.e., prioritizing
the gene perturbation effect as an overall perturbation effect, in a
functional topic-specific way, and quantifying the relationships
between different perturbations. Extensive tests on MUSIC
demonstrated that it is an effective and applicable pipeline for
analyzing single-cell CRISPR screening data.

Single-cell CRISPR screening is a powerful technique, making
it feasible to perform large-scale perturbations in a single-cell
granularity. However, it is inherently noisy, presenting to be
challenging for such data analysis. Currently version of MUSIC
contains a series of carefully designed filtering steps to reduce
the data noise, while future improvements are expected to refine
and update such filtering steps to make it more effective.

Methods
Cell quality control. MUSIC evaluates cell quality based on three factors29, i.e.,
number of genes detected (default 500), number of unique molecular identifiers
induced (default 1000), and percentage of mitochondrial genes detected
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(default 10% among all the detected genes). Only cells with the first two factors
above the thresholds and the third factor below the threshold are retained.

Data imputation. Single-cell RNA-seq data is sparse10,11, only a small fraction of
the transcripts presented in each cell are sequenced. To improve the quality of data,
MUSIC adopted SAVER16, a R package for single-cell RNA-seq data imputation
which is proven to be necessary for MUSIC to discover the real and correct
regulation relationships (Supplementary Table 2). It should be noted that SAVER
has been proven to recover the true expression level of each gene in each individual
cell, avoid to introduce spurious correlation or false positive gene pairs that have no
biological correlations.

Evaluation of sgRNA knockout efficiency. The sgRNA knockout efficiency in
CRISPR screening should also be carefully evaluated. The sgRNA will target Cas9
to a specific gene locus, but only 70–80% of them will generate true loss-of-function
of the targeted gene30,31. This implies that in 20–30% of the cells with a detected
sgRNA, the gene can be active or partially active and show a wild-type phenotype
(false positive) which will influence the estimation for the impact of perturbation.
Thus, a step to filter such cells is needed. Intuitively, the basic idea of our filtering
algorithm is based on the assumption that if the differentially expressed gene
profile of a perturbed cell is more similar to the control cells than that of other
same perturbed cells, this cell will be filtered. Specifically, for each type of per-
turbation, we performed the following steps:

● If the corresponding gene expression values of the perturbation are all zero
among all the cells, this perturbation will be filtered directly. If not, perform
the following steps.

● Identifying genes that are differentially expressed between control and
perturbed cells by the Kolmogorov–Smirnov test at p < 0.05.

● For each perturbed cell i, the median of cosine similarity of differentially
expressed gene profile between i and all the other perturbed cells with the
same perturbation is calculated, denoted as M(Pi).

● For each perturbed cell i, the median of cosine similarity of differentially
expressed gene profile between i and all the control cells is calculated, denoted
as M(Ci).

● For each cell i, if M(Ci) is bigger than M(Pi), this cell will be filtered.
● For a specific perturbation, if the influenced cells filtered are amount to a

high proportion (default 90%) among all, such perturbation is filtered.

The minimal perturbed cell number per perturbation. Datlinger et al.7 con-
cluded that at least 30 cells are required to capture each perturbation phenotype.
Therefore, the perturbations with perturbed cells lower than 30 (default) are not
considered in MUSIC.

Selecting highly dispersion differentially expressed (DDE) genes. MUSIC
identified differentially expressed genes in single-cell sequencing data as dispersion
differentially expressed (DDE) genes, i.e., genes with a maximum dispersion dif-
ference (DD) between the case and control. MUSIC selects DDE genes based on the
subsequent statistical test:

DDi ¼ ZDcase ið Þ � ZDcontrol ið Þj j ð1Þ
where DDi is the i-th gene’s dispersion difference, and ZDcase(i) and ZDcontrol(i) are
the z-scores of the i-th gene’s dispersion in the case and control cells, respectively.
Before calculating the z-score, the genes were binned based on their average
expression, and the z-score of the dispersion was calculated within their corre-
sponding bins. The z-score of the i-th gene’s dispersion (ZDi) is calculated as

ZDi ¼
Di � μi

σ i
ð2Þ

where μi and σi are the mean and variance of the i-th gene expression, respectively,
within its corresponding bin and Di is the dispersion of the i-th gene expression,
which is calculated as

Di ¼ log
σ i
μi

ð3Þ

where σi and μi are the variance and mean, respectively, of the i-th gene expression.

Normalizing and rounding the expression value. The expression level of dif-
ferent genes is normalized and rounded to fit the topic model:

Xnormalized ¼ X � μcontrol
μcontrol

´ 10
� �

ð4Þ
We round the final expression value as the ×10 magnification of the original

normalized expression values.

Topic models. The topic model was originally presented in the machine-learning
and natural language processing community for latent topics discovery in a par-
ticular set of documents17. This generative hierarchical model assumes that a word

in a document is generated through two steps, i.e., a topic in a document is selected
with a certain probability, and then a word in the topic is selected with a certain
probability. The generative process of topic model is formulated as follows: θd and
�t are, respectively, the distribution over topics of document d and the distribution
over words of topic t.

θt� Dirichlet αð Þ ð5Þ

∅t� Dirichlet βð Þ ð6Þ
Here, α and β are hyper-parameters following Dirichlet distributions. For

generating word i in document d, topic Zd,i is first sampled from document’s
distribution over topics, and then word Wd,i is sampled from the topic’s
distribution over words based on the following distributions,

Zd;i _ θd� Multinomial θdð Þ ð7Þ

Wd;i _ Zd;i;∅Zd;i
� Multinomial Zd;i

� �
ð8Þ

In our study, the topic model is utilized to process our single-cell CRISPR
screening data. We made a perfect analogy between text mining and perturbation
effect evaluation, where documents can be analogized to the cells conducted by
single-cell CRISPR screening and the word frequency in a document can be
analogized to the expression value of genes for a given cell. We determined the
joint probability of gene expression for each cell by integrating parameter θ into
∅ and applied the collapsed Gibbs sampling to assign the gene of each cell to
topics. Detailed information can be refereed17.

In summary, topic modeling was performed on the entire screen dataset to
compare the impact of different perturbations under the same background. Topic
modeling resulted into two outputs, i.e., (1) the probability distribution of each
topic, representing as a topic profile, which is used to characterize each
perturbation (include control) and (2) the enriched functional profile of each
topic, which is intuitively calculated by the enrichment analysis with top 10%
differentially expressed genes in each topic. Then, with such two profiles in hand,
we are able to quantitatively calculate the overall perturbation effect ranking, topic-
specific perturbation ranking as well as the relationship between perturbations.

Annotating each topic’s function. MUSIC obtains the occurrence probabilities
of genes available in each topic. For each topic, MUSIC took full advantage of the
power of topic profile modeling to perform a weighted biological function anno-
tation. Intuitively, genes with large occurrence probabilities are more representative
of the function and they should be selected to annotate the topic function. Spe-
cifically, for each topic, MUSIC performed the following steps:

● MUSIC first selects the top 10% genes of each topic based on their occurrence
probabilities.

● Genes selected by step 1 are used to perform the functional enrichment
annotation with clusterProfiler32.

● In the end, the top-ranked n (default 5) GO terms (rank by q value) are
selected to represent the topic functions.

Automatically selecting the optimal topic number. Topic distribution is influ-
enced by the topic number. MUSIC applies an automatic strategy to select the
optimal topic number. Intuitively, an optimal topic number should distinguish the
cells with different perturbation effects from each other as much as possible. In our
study, we defined a matrix Gm×n representing the n topics’ occurrence probability
in m cells derived from the topic model with a certain topic number n. Then, an
optimal topic number should make Gm×n match the following two criteria: (I) For
each topic, its occurrence probability in different perturbation cells should differ as
much as possible. Such a measurement is defined as a specificity score (SSn) for all
the topics under a certain topic number n, as calculated in Eq. (9). The larger the
specificity score, the better the selected topic number. (II) The fewer topic functions
dominating each cell, the better. Such a measurement is defined as a purity score
(PSn) for all the topics under certain topic number n, as calculated in Eq. (10). The
larger the score, the better the selected topic number. Finally, MUSIC defined the
combination score(CSn), which is a weighted average of the specificity score and
purity score, as shown in Eq. (11). Again, the larger the score, the better the selected
topic number.

The specificity score (SSn) is calculated as

SSn ¼ log
1
n

Xn
j¼1

σ j
μ2j

 !
ð9Þ

where n is the selected topic number, and σj and μj are the variance and mean,
respectively, of the j-th column of Gm×n.

The purity score (PSn) is calculated as

PSn ¼ log
1
m

Xm
i¼1

σ i ð10Þ

where n is the selected topic number, m is the number of rows in matrix Gm×n,
and σi is the variance of the i-th row of Gm×n.
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The combination score (CSn) is calculated as

CSn ¼ αTSSn þ 1� αð ÞTPSn ð11Þ
where n is the selected topic number and α (default 0.5) is the weight with value of
[0, 1]. Considering the time cost and the biological interpretability of the result, we
recommended a reasonable scope (now 4 to 6) of topic model number to be tried,
by considering the prior information of biologic functional categories.

Considering off-target effects. A sgRNA off-target effect may exist for these
novel types of data due to application of the CRISPR knockout/knockdown
screening technique. For CRISPRi technique, MUSIC won’t consider this step,
since CRISPRi knockdown is highly specific with minimal off-target effects33. In
the current version MUSIC only provides the off-target information of the
knockout. Basically, MUSIC integrates sgRNA sequence information with its
corresponding knockout gene expression to determine whether the sgRNA has
induced an off-target effect as following:

● CRISPRseek34 is performed to predict possible off-targets based on the sgRNA
sequence information.

● Correlations of the transcriptional expression values between the correspond-
ing knockout gene and the possible off-targets are calculated for the case and
control, respectively.

● If a significant increase in the correlations between the case and control is
detected, the possible off-target effect for this knockout is reported in MUSIC.

Obtaining the topic-specific ranking list. To analyze the functions of the per-
turbations impact, MUSIC prioritizes the perturbation effect in a topic-specific
way. For a specific topic, MUSIC prioritizes the perturbation effect by calculating
the specific topic probability difference (TPD) between the case and control.
Intuitively, the ranking list is obtained by evaluating the perturbation effect on this
specific topic, where the perturbation should influence this topic as much as
possible while keeping other topics as unaffected as possible. Specifically, MUSIC
performed the following steps:

(1) MUSIC calculates topic probability difference (TPD) based on Student t-test.
In order to meet the conditions of the Student t-test, the topic probability of
different cells with different perturbation were normalized to the standard
normal distribution. Specifically, for the i-th perturbation on the j-th topic,
each topic probability was z-normalized with respect to the mean and
standard deviation of the corresponding control population as:

Pnormalized i; jð Þ ¼ P i; jð Þ � μcontrol
σcontrol

ð12Þ
(2) We also realized that the number of cells with different edits generally varies

greatly, i.e., the sample imbalance issue exists, which can affect the analysis of
the perturbation effects greatly. To address this issue, MUSIC first identified
the minimal cell number (M) among all perturbations. Then, for each
perturbation, MUSIC adopted a bootstrapping strategy to randomly samples
M cells to perform the subsequent Student t-test for 1000 times, and the
median is obtained. The test statistic of the i-th perturbation on the j-th topic
is calculated as

TPDij ¼
�Xij � �Xcontrol;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ni�1ð ÞS2ijþ ncontrol�1ð ÞS2control;j
niþncontrol�2

1
ni
þ 1

ncontrol

� �� �r ð13Þ

where �Xij is the mean of normalized topic probabilities calculated in Eq. (12)
for the i-th perturbation on the j-th topic, �Xcontrol;j is the mean of normalized
topic probabilities of control cells for the j-th topic, Sij is the standard
deviation of normalized topic probabilities of cells for the i-th perturbation
on the j-th topic, Scontrol,j is the standard deviation of normalized topic
probabilities of control cells for the j-th topic.

In our study, the test statistic TPD will be taken for consideration for the
following two reasons: (a) TPD is a valid metric to estimate the difference of
mean between two populations. (b) TPD can be positive or negative, thus
used to estimate the direction of a perturbation impact.

(3) Then, MUSIC prioritizes such a perturbation by considering the effect of the
perturbation on this specific topic as well as its influence on other topics.

MUSIC applies the ratio of each topic probability difference (TPDR) to
evaluate its influence on other topics. The bigger the ratio is, the less the
perturbation influence on other topics.

The TPDR of the i-th perturbation on the j-th topic is calculated as

TPDRij ¼
TPDij

��� ���
Pn

i¼1 TPDij

��� ��� ð14Þ

where TPDij is calculated in Eq. (13).
(4) Finally, MUSIC defines an efficient score to evaluate the effect of the i-th

perturbation (CSi) on a specific topic considering both TPD and TPDR. The

larger the score, the higher the rank.

CSij ¼ 0:5 �
TPDij

��� ����min TPDi:j jð Þ
�

max TPDi:j jð Þ �min TPDi:j jð Þ þ
TPDRij �minðTPDRijÞ

max TPDRij

� �
�minðTPDRijÞ

0
@

1
A

ð15Þ
MUSIC also calculated a threshold to determine if a perturbation had an

impact on a specific topic with statistically significance. Intuitively, the impact
of a perturbation on a functional topic is significant if it is greater than that
generated randomly. MUSIC first obtained TPDrandom,j which can be calculated
in Eq. (16) and performs the same process to obtain the score (CS) between
selected ones and all. This process is repeated for 1000 times to obtain the median
as the threshold. The impact of the i-th perturbation on a specific topic j is
considered significant when CSij is bigger than the threshold.

TPDrandom;j ¼
�Xrandom;j � �Xcontrol;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nrandom�1ð ÞS2random;jþ ncontrol�1ð ÞS2control;j
nrandomþncontrol�2

1
nrandom

þ 1
ncontrol

� �� �r ð16Þ

where �Xrandom;j is the mean of normalized topic probabilities calculated in Eq. (12)
for the M selected control cells on the j-th topic.

Obtaining the overall perturbation effect ranking list. For the calculation of the
overall perturbation effect ranking list, the sum of each topic’s TPD (TPDS) for
each perturbation was calculated:

TPDSi ¼
Xn
j¼1

TPDij

��� ��� ð17Þ

It should be noted that in practical the calculation of TPD here is needed to be
adjusted by performing the same bootstrapping on control cells. Specifically, the
adjust TPD, i.e., TPDA is calculated as

TPDAij ¼ TPDij � TPDrandom;j ð18Þ

Obtaining the relationships between different perturbations. MUSIC quanti-
fies the relationships between two perturbations by calculating the Pearson
correlation coefficient of two perturbations’ TPDA profiles. Furthermore, the
perturbation correlation networks can be automatically visualized by MUSIC for
each testing dataset, respectively.

Prioritizing perturbation effect difference under different treatment
conditions. When cells were treated under different experimental conditions,
MUSIC can be applied to prioritize the perturbation effect difference under two
different conditions, and identify the perturbation with substantial effect change.
Intuitively, by comparing the TPDS of one specific perturbation under two dif-
ferent conditions, MUSIC identified those perturbations whose impact changed
significantly under two conditions. Specifically, MUSIC first selected the common
perturbations under two conditions, then MUSIC defined the score perturbation
impact difference (PID) to quantitatively represent the perturbation impact dif-
ference between two different experimental conditions. For a perturbation i, PIDi

is calculated as

PIDi ¼
TPDSðcondition 2ÞiPn
i TPDSðcondition 2Þi

=
TPDSðcondition 1ÞiPn
i TPDSðcondition 1Þi

ð19Þ

where n is the number of common perturbations under two conditions and TPDS
is calculated by Eq. (17).

Comparisons between negative control and blank control. Given that the
former steps rely on the comparisons between perturbed and negative control cells,
we made a statistical test to compare negative control with blank control to indicate
the suitability of applying negative control in the experiments.

First, we believe that it should be slightly different to use the negative control
(induced with non-targeting gRNAs) and the blank control (none gRNAs induced)
in the single-cell CRISPR screening experiments. While in the previous studies4–8,
researchers in this community tend to choose negative control rather than blank
control to keep a relative fair comparison scenario, since it is necessary to eliminate
the effects of the induction on the cells.

Second, the differences between negative control and blank control should be
less significantly than that between knockouts/knockdowns and blank control.
To prove this point, we made the following test with stimulated Jurkat cell7

which offered cells without any induction of gRNAs (blank control). The routing
imputation and filtering were performed on these cells. Then a bootstrap sampling
strategy is applied on the blank control cells to randomly selected 10% among
them to compare with negative control and other knockouts cells. Then we
calculated the similarity of such comparison for 100 times samplings. The statistical
comparison result is shown in Supplementary Fig. 15. It is clearly to see that the
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negative control cells are significantly similar to blank control (t-test p < 2.2e−16)
than any other knockouts.

Robust test. For each datasets, we randomly relabeled 20% control cells as a
control test subset to be processed along other knockouts or knockdowns, and
calculated the rank of the control test subset in the overall perturbation effect
ranking result. We calculated the rate of the knockouts or knockdowns whose rank
below the control test subset among the total number of knockouts or knockdowns.
The above process was repeated 10 times for each datasets to reduce randomness.
The average rate calculated above is about 0.06 among all the available datasets,
indicating that the control testing sets in general disturb the final ranking list a
little. Besides, for each datasets, the Pearson correlation coefficients were similarly
calculated as aforementioned between the overall perturbation effect ranking
results obtained from this random test and that from the original studies. The
average Pearson correlation coefficient is 0.82, further indicating that the data
preprocessing steps in MUSIC is reliable and robust with tolerance to the
random noise.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are available in the Gene Expression
Omnibus (GEO) repository with the accession codes: GSE90063, GSE90546, GSE90486,
GSE92872, GSE108699. All other relevant data are available upon request.

Code availability
MUSIC is available as an R package at https://github.com/bm2-lab/MUSIC with a
Docker version for a quick deployment at https://hub.docker.com/r/bm2lab/music/.
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