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Abstract 

Background  The precise characterization of individual tumors and immune microenvironments using transcriptome 
sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer 
treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity 
of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcrip-
tomes for personalized cancer treatment.

Methods  Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of person-
alized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable 
solution to stratify individual patient samples based on quantitative evaluation of their personalized immune micro-
environment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response 
to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired 
with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, 
and finally prioritize them for personalized clinical use based on bipartition graph optimization.

Results  We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 
tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining 
clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples.

Conclusions  Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept 
study to predict potential drug combinations for further experimental validation and clinical usage using the single-
cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time 
from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web 
server of comboSC for both clinical and research users is available at www.​combo​sc.​top. The source code is also avail-
able on GitHub at https://​github.​com/​bm2-​lab/​combo​SC.
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Background
Precision medicine is a promising concept and future 
trend in cancer therapy, focusing on matching the appro-
priate treatment for each cancer patient based on the 
individual omics profile of their tumor [1–3]. Recent 
studies have indicated that the application of personal-
ized and precise treatment can substantially improve the 
survival of tumor patients, which has achieved increased 
attention in effectively boosting such prototype stud-
ies in the clinic [4–8]. Previous modeling of treatment 
response was mostly based on in vitro cell line assays or 
gene expression from bulk transcriptome sequencing of 
tumor samples by quantifying the average profile of the 
whole tumor in each patient [9–11]. However, cancer 
is an extremely heterogeneous disease that introduces 
variations not only between cancer cells from different 
patients but also between cancer cells within each patient 
[12, 13], and clinical predictions of patient responses to 
medications targeting tumor heterogeneity at a single cell 
level have not been fully elucidated. In addition, tumor 
and immune cell interactions, which characterize the 
tumor microenvironment, also have a great impact on 
cancer treatment. Such heterogeneity and complexity of 
individual tumors are associated with tumor progression 
[14] and drug resistance [15], which is challenging for 
precision medicine applications in clinical practice.

To overcome the challenges of intratumor heterogene-
ity, drug combination therapy is applied to discover opti-
mal drug sets targeting different tumor and immune cell 
types by investigating marker genes and biological path-
ways. Several computational methods have been devel-
oped to identify the optimal drug combination using 
in vitro datasets [16–18] or bulk RNA sequencing (RNA-
seq) [19–22], but they are still limited to being in  vitro 
or limited to solving tumor heterogeneity for cell groups 
with divergent expression but quantified by the average 
in bulk sequencing. Single-cell RNA sequencing (scRNA-
seq) technique provides the gene expression of cell types 
at the single-cell level and has been widely applied to 
uncover the high-resolution tumor microenvironment 
landscape in various cancer types [23–31], providing an 
opportunity to overcome the limitations of bulk RNA-
seq methods in intratumor heterogeneity evaluation. 
Recently, a computational tool has been developed to 
optimize drug combinations with single-drug perturba-
tion data using cell mass cytometry time-of-flight tech-
nique, revealing the advantage of single-cell technique in 
addressing tumor heterogeneity issues for drug combina-
tion optimization [32]. Several recent studies have also 
developed computational protocols and methodologies 
to identify drug combinations based on patient-derived 
cells or targeting tumor heterogeneity through single-cell 
sequencing [8, 18, 22, 30], suggesting a boosting power of 

using comprehensive single-cell-level heterogeneity data-
sets for drug combination optimization; however, further 
study is waiting to be fully conducted.

In addition, the revolutionary strategy of immuno-
therapy, focusing on immune checkpoint blockade (ICB) 
immunoregulatory pathways such as programmed cell 
death-1 (PD-1)/programmed death-ligand 1 (PD-L1) 
signaling axis, has achieved effective treatment responses 
in a portion of clinical cases [33–38]. Responses to check-
point inhibitor immunotherapy are highly correlated 
with the levels of tumor immune infiltration and patient 
immune activity [39]. However, only 13% of patients 
satisfying the immunotherapy requirement of immune 
infiltration and immune activity can derive a long-term 
response to ICB monotherapy [40]. Moreover, the current 
transcriptome-based approach only estimates tumor-
infiltrating immune cells for immunotherapy patients 
but neglects complex and heterogeneous tumor cells and 
their interactions with immune cells in the tumor micro-
environment (TME). Combining small molecules and 
ICB to mediate TME and boost immunotherapy serves 
as a promising strategy for effective tumor treatment; 
however, how to rationally identify such small molecules 
from a large compound space that can be paired with ICB 
for effective combinational therapy based on the precise 
characterizing of the TME is challenging.

To explore all these issues in personalized tumor ther-
apy, for the first time, we present a feasible precision 
oncology treatment prototype, comboSC (personalized 
tumor combination therapy optimization based on the 
single-cell transcriptome), to perform personalized can-
cer combination therapy optimization using scRNA-seq, 
which aims to maximize the translational potential of 
the in  vitro cellular response for identifying synergistic 
drug combinations and prioritizing them for personal-
ized clinical usage with single-cell RNA-seq. Specifically, 
comboSC first quantitatively characterizes the person-
alized tumor microenvironment of individual tumors 
using scRNA-seq data in  vivo and then performs com-
bination therapy optimization for both immunotherapy 
and targeted therapy based on transcriptomic profiles of 
both tumor and immune cell groups, taking advantage 
of the largely existing in  vitro pharmacogenomics data 
from LINCS [11, 41], Connectivity Map (CMap) [10], 
and Genomics of Drug Sensitivity in Cancer (GDSC) 
[42, 43]. We applied comboSC to a comprehensive set of 
119 tumor samples from 15 cancer types, including solid 
tumors and blood tumors, and indicated its generalized 
utility and advantages in combination therapy optimiza-
tion across different cancer types. Overall, comboSC pro-
vides a feasible and one-stop computational framework 
and a proof-of-concept study to predict potential drug 
combinations for further experimental validation and 
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clinical usage, which will facilitate and accelerate person-
alized tumor treatment by reducing screening time from 
a large drug combination space and saving valuable treat-
ment time for individual patients. A user-friendly com-
boSC web server for both clinical and research users is 
available at www.​combo​sc.​top.

Methods
Data collection
We collected the single-cell RNA-seq (scRNA-seq) 
data of cancer patients as comprehensively as possible 
from literature mining and scRNA-seq databases [44, 
45] (Additional file  2: Table  S1). All scRNA-seq data 
used in this study were sequenced before the treat-
ment of target therapy and immune therapy, includ-
ing anti-PD1/PDL1 therapy and anti-CTLA4 therapy. 
Over 360,000 cells from 119 samples, 15 cancer types 
including solid tumors and blood tumors, and 2 
sequencing platforms were analyzed by comboSC in 
this paper (Additional file  2: Table  S2). Cancer cell 
line transcriptional profiles were obtained from the 
Cancer Cell Line Encyclopedia (CCLE) (https://​porta​
ls.​broad​insti​tute.​org/​ccle/​home) [46, 47]. Pharmacog-
enomic data for CCLE datasets were downloaded from 
Genomics of Drug Sensitivity in Cancer (GDSC) [42, 
43] and Connectivity Map (CMap) [10]. The pharma-
cogenomics data in GDSC and CMap were used to 
predict the drug response to the patient (Additional 
file  2: Tables S3-4). Drug-drug interactions were pre-
dicted by DrugComb [48]. We collected the recom-
mended drug combinations in clinical studies from 
ClinicalTrials.gov.

Single‑cell RNA data preprocessing
To preprocess the scRNA-seq data, comboSC first 
uses the Cell Ranger toolkit (version 3.1.0) provided by 
10 × Genomics to aggregate raw data, filter low-qual-
ity reads, align reads to the human reference genome 
(GRCh38), assign cell barcodes, and generate the unique 
molecular identifier (UMI) matrix. Then, comboSC uses 
Seurat v3 [49] to analyze the scRNA-seq data. Specifi-
cally, the raw UMI matrix is processed to filter out cells 
with fewer than 200 genes or greater than 5% mitochon-
drial gene counts to ensure that most of the heteroge-
neous cell types are included in downstream analyses. 
Next, for general applicability to highly variable person-
alized tumor scRNA-seq profiles, comboSC takes the 
following steps to reduce potential noise and artifacts. 
For scRNA-seq datasets with a high dropout rate, com-
boSC used SAVER [50] to correct abnormal read counts 
and recover the gene profiles by neighboring genes and 
cells. For the integrative analysis of large-scale scRNA-
seq datasets from different experiments and different 

sequencing platforms, comboSC uses matching mutual 
nearest neighbors (MNN) from Seurat v3 [49] to remove 
potential batch effects. Last, comboSC performs global 
cell clustering and cell annotation for immune-related 
cell types as tumor-related cell types in each sample by 
marker genes from the CellMarker database [51]. Com-
boSC applies copycat [52] to annotate malignant cells by 
copy number variation. For TISCH datasets [44, 45], we 
retrieved the raw scRNA expression count files and then 
applied them to the comboSC data preprocessing step, 
which was consistent with the data preprocessing step for 
other scRNA-seq samples in our study. Specifically, we 
used the well-curated cell annotations from the TISCH 
database, where manual cell annotation is recommended 
to use manual cell annotations in the comboSC preproc-
essing step. For drug combination prediction, we dis-
carded two datasets with too few malignant cells (< 100) 
or too few T cells (< 60).

Personalized immune score calculation by the Tres model
ComboSC uses the T cell resilience (Tres) model [39] for 
calculating immune scores to predict personalized immu-
notherapy response levels (Fig.  1b). Tres model utilizes 
single-cell and bulk RNA-seq data to capture signatures 
of T cell group resilient to immunosuppressive signals 
and successfully predicts clinical responses for patients 
who received immune-checkpoint inhibitors immuno-
therapy for melanoma, lung cancer, triple-negative breast 
cancer, and B cell malignancies [39]. Specifically, the 
Tres model constructs a multivariate linear regression 
by three groups of variables, including cytokine signaling 
activities, T cell proliferation signatures, and interactions 
between the above two variables. The cytokine signaling 
activities indicate the personalized immunosuppression 
level, which is calculated by CytoSig [53] with TGF-β1, 
TRAIL, and PGE2 signaling, and the T cell prolifera-
tion signatures are calculated by modeling from all genes 
in cell cycle and DNA replication pathways, as well as 
genes for T cell cytotoxicity through a linear regression 
approach.

ComboSC first identified all T cell subgroups from the 
input scRNA-seq dataset, including CD4 T cells and CD8 
T cell subgroups [39]. Following the methods from the Tres 
model paper [39], comboSC next calculated the aggregated 
scRNA profile for all T cells in each sample as a pseudo-
bulk profile and normalized the gene expression using 
log2

TPM
10 + 1  . The scRNA-seq gene expression was fur-

ther scaled to zero mean across all input samples. Consist-
ent with the Tres model [39], comboSC used the score of 0 
as the cutoff for responsive samples with high or middle 
immune scores and non-responsive samples with low 
immune scores, and the complete response samples were 
defined as the top 10% samples among all input samples 

http://www.combosc.top
https://portals.broadinstitute.org/ccle/home
https://portals.broadinstitute.org/ccle/home
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[40], as other samples with score over 0 but lower than the 
high immune score samples were defined as middle 
immune score samples. We used 63 samples to evaluate the 

performance of the Tres model score for immunotherapy 
response. The ROC curve and the multi-class AUROC 
value were calculated using the pROC package in R. The 

Fig. 1  ComboSC precision medicine framework. comboSC comprises five modules: a Single-cell RNA sequencing data preprocessing. b 
Personalized immune profile evaluation. c Treatment strategy selection based on immune score. d Bipartition graph modeling for personalized 
combination therapy prediction. e Solving the optimization model for optimal combination therapy prediction
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personalized response to immune checkpoint blockade 
therapy was measured using Response Evaluation Criteria 
in Solid Tumors (RECIST) v1.1. We applied the same clas-
sification criteria of complete responders (CR) and partial 
responders (PR) as those of RECIST and took patients of 
stable disease (SD) and progressive disease (PD) as non-
responders (NR).

Inferring drug response for single‑cell RNA‑seq cell clusters
To infer the drug response to specific malignant cell 
clusters, we collected the cancer cell line bulk RNA-seq 
data from the CCLE database [46, 47] and correspond-
ing drug response annotations for each cell line from 
the GDSC database [42, 43]. Similar to previous litera-
ture [54, 55] projecting bulk RNA-sea data to single-cell 
RNA-seq data, comboSC takes a similarity-based cali-
bration method scmap [56], which calculates the simi-
larity of gene expression profiles between malignant cell 
groups in individual tumors and CCLE cell lines and 
assigns drug responses to cell groups by drug responses 
from CCLE cell lines with high similarity. Briefly, scmap 
first represents each cell cluster by the median expres-
sion of each gene and then calculates the similarity of 
cell clusters to the query reference as the CCLE cell 
line gene expression, which also uses unsupervised fea-
ture selection to include only the genes that are most 
relevant for the underlying biological differences and 
overcomes the batch effect. This projection method is 
applied in comboSC for both cell clustering and drug 
response prediction.

Drug response‑driven malignant cell Louvain clustering
To identify heterogeneous malignant subgroups from all 
malignant cells, comboSC takes a drug response-driven 
Louvain clustering method to group cells with similar 
drug responses in the same cell cluster and achieve stable 
subclusters for single-cell analysis [49]. The basic idea of 
such drug response-driven Louvain clustering is to set the 
resolution parameter r in routine Louvain clustering auto-
matically, which will dynamically determine the cluster 
number. Specially, the “FindClusters” function in Seurat 
contains a resolution parameter r that sets the “granular-
ity” of the downstream clustering, with increased values 
leading to a greater number of clusters, while this param-
eter is set manually in the traditional study. In our study, 
comboSC maximizes the following objection function J to 
represent the drug response specificity in each cell clus-
ter and maximizes J to optimize the clustering resolution 
parameter r automatically using the following functions:

(1)
Maximize J (r) =

M(r)

10
+

∑

S(i) ∗ cell_number(i)

T

subject to:

Here, r represents the resolution used in Louvain clus-
tering, and M(r) represents the number of cell clusters 
under resolution r. i and j represent the ith and jth cell 
cluster, respectively. The coefficient 1/10 for M(r) is used 
to adjust the range of the first item similar to the second 
item, ranging from 0 to 1. k represents the kth drug, and 
N represents the total number of drug candidates. cell_
number(i) represents the number of cells in the ith cell 
cluster, and T represents the total number of malignant 
cells. The coefficient of T is determined as 1/10,000 and 
1/2000 since the resolution r would be limited to ranges 
from 0.3 to 1.5 for T of 3000 cells, which is less restricted 
than Seurat “FindClusters” function, which limits the 
resolution r from 0.6 to 1.2. sim(i) represents the similar-
ity between the ith cell cluster and the reference CCLE 
cell lines, calculated as the maximum similarity between 
each cell in the cluster and each CCLE cell line. Wki(r) 
and Wkj(r) represent the response of the kth drug for the 
ith and jth cell clusters, respectively, with the resolution 
r. The intuition of Eq. 1 is to maximize the resolution as 
well as the number of responsive cells among the clusters 
that are similar to known CCLE cell lines, and the simi-
larity threshold is set as α in Eq. 2. The intuition of Eq. 4 
is to set a threshold ε to constrain the similarity between 
any two responses given the ith cluster and jth cluster 
and the kth drug, so as to avoid an infinite increase in res-
olution. In this study, α is set to 0.4 (Additional file 1: Fig. 
S1), and ε is set to 1.

Cell type‑specific drug response prediction for low 
immune score samples
ComboSC utilizes tumor cell expression data from 
the CCLE database [46, 47] and corresponding drug 
response data for CCLE expression data from GDSC 
[42, 43] for cell type-specific drug response prediction. 
Based on the highest similarity score of the CCLE cell 
line to each cell group, comboSC uses different drug 
response assignment strategies. When the highest simi-
larity score is above 0.8, comboSC directly assigns the 
drug response of the best-matched CCLE cell line to 
the cell group. If the highest similarity score is above 

(2)Where S(i) =

{

1, if sim(i) > α

0, if sim(i) ≤ α

(3)
T

10, 000
< r <

T

2000

(4)
N
∑

k=1

M(r)
∑

i=2

i−1
∑

j=1

(

Wki(r)−Wkj(r)
)2

> ε
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0.4 but below 0.8, which indicates a partial correlation 
between the cell group and CCLE cell lines, comboSC 
applies the deep learning method CaDRReS [57] to 
refine similarity from the top similar CCLE cell lines 
and assign an adjusted drug response to the cell group. 
ComboSC would ignore the distinct cell group if all 
CCLE cell lines showed a low similarity score (< 0.4) to 
the cell group (Additional file 1: Fig. S1).

Immune exhaustion‑based drug response prediction 
for middle immune score samples
ComboSC predicts drug response to inhibition or rever-
sal of immune cell exhaustion from immune exhaustion-
related trajectories. First, the trajectory inference of the 
tumor immune microenvironment is applied to scRNA-
seq data with Monocle3 (https://​cole-​trapn​ell-​lab.​github.​
io/​monoc​le3) [58, 59], since the immune microenviron-
ment is characterized by tumor cell clusters and immune 
cell clusters in each sample from the comboSC pre-
processing step. ComboSC focuses on four ubiquitous 
immune-exhausting trajectories related to the modula-
tion of the antitumor immune response, including (1) 
active T cell exhaustion, (2) memory T cell exhaustion 
[46], (3) tumor-associated macrophage differentiation, 
and (4) cancer-associated fibroblast (CAF) differentia-
tion, and defines the trajectory start cell type and end cell 
type for each trajectory from the previous knowledge of 
these trajectories. Second, differentially expressed gene 
(DEG) analysis is applied to each immune-exhausting 
trajectory to identify trajectory signature genes if the 
trajectory existed in the input scRNA-seq dataset. If the 
trajectory exists, the trajectory score is computed by the 
cell count of the trajectory end cell type divided by the 
cell number of the trajectory start cell type. Also, if the 
cell types of the cell trajectory did not exist in the sin-
gle-cell dataset, comboSC took “NA” as the trajectory 
score to the next step. Finally, comboSC predicts the 
score of the small molecular drug response to the signa-
ture genes of the immune exhaustion-related trajectory 
by L1000CDS [41], a pharmacogenetic search engine 
that calculates the cosine similarity of the small molecu-
lar drug response to cell groups by the overlap between 
the input DEGs and the drug response signature genes 
from CMap [10] and enables users to find small molecule 
signatures that match query gene expression signatures. 
ComboSC calculates the input DEGs by contrasting the 
cell groups at the start and end of the selected cell tra-
jectory using Seurat [49] and then searches the DEGs 
in the L1000CDS [41] tool (Application Programming 
Interface) API (https://​lincs​proje​ct.​org/​LINCS/​tools/​
workf​lows/​search-​lincs-​metad​ata-​throu​gh-​apis) for drug 
response predictions.

Predicting small molecule/drug combination therapy 
response with a bipartite graph network
For patients with middle or low immune scores, comboSC 
applies a bipartite graph network to model the relationship 
between drug responses and personalize scRNA-seq pro-
files from patients (Fig. 1). Bipartite graph network model is 
able to provide a maximum coverage of the diverse molec-
ular cell phenotypes of tumor and immune cell groups 
with parsimonious drug combinations considering various 
information and constrains, including cell population size, 
cell trajectory, drug synergy effect, drug side effect, and 
drug toxicity. First, comboSC takes the targeted cell cluster 
or developmental trajectory as the left nodes of the bipar-
tite graph network, and a larger cell population size would 
be assigned a higher weight. ComboSC integrates the 
static profile for each cell (obtained from scRNA-seq) and 
the dynamics of gene expression with the estimated RNA 
velocity (calculated by velocyto [60]) for each cell cluster. 
The latter predicts the fate of each single cell by its ratio 
of unspliced and spliced mRNA to mature mRNA from 
the read mapping file, and such possible future cell fate 
trends will also guide the prediction of drug combinations. 
Second, comboSC takes cancer drugs as the right nodes 
of the network. Finally, comboSC considers both positive 
drug response and side effects, including antagonism and 
drug toxicity to the cell cluster as the edges between nodes 
from both sides. Specifically, comboSC uses drug response 
annotations from the GDSC database [42, 43] for cell line 
datasets in the CCLE database68 and drug toxicity from the 
SIDER database [61]. The edges in the comboSC bipartite 
graph network represent the relationship between the mul-
timodal views of the selected cells and the comprehensive 
effects of the drugs described above. Given the complexity 
of multiple object solutions for the bipartite graph network, 
comboSC applies a multi-objective programming function 
to solve the model and identifies the optimal drug combi-
nations with the score J as follows:

where J  represents the goal of the optimization function. 
N  represents the number of drugs in the database, M rep-
resents the number of cell clusters, and T  represents the 
total number of cells. Cj represents the weight of the jth 
cluster, which is determined by the current cell number 

(5)

Maximize J =

N
∑

i=1

M
∑

j=1

CjWijSi +

N
∑

i=1

10 ∗ Ri

T
− �

N
∑

i=1

M
∑

j=1

εiCjWijSi

(6)where, Cj =
tj

T
+

Vj

M ∗ T

(7)subject to

N
∑

i=1

Si ≤ 2

https://cole-trapnell-lab.github.io/monocle3
https://cole-trapnell-lab.github.io/monocle3
https://lincsproject.org/LINCS/tools/workflows/search-lincs-metadata-through-apis
https://lincsproject.org/LINCS/tools/workflows/search-lincs-metadata-through-apis
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in the jth cell cluster as tj , the number of cells developing 
towards the ith cell cluster in RNA velocity analysis as Vj , 
and the number of cell clusters M (see Eq. 6). Here, for 
the jth cell cluster, for example, positive Vj indicates the 
potential to increase the cell group size and increase the 
weight of the cell cluster Cj by the second term of formula 
6. A larger absolute value of Vj indicates a higher impact 
of RNA velocity to the jth cell cluster. Wij is the sensitiv-
ity score of the ith drug to the jth cell cluster, which is 
calculated for the low and middle immune score samples, 
respectively, as described aforementioned. Si represents 
the selection of the ith drug for combination therapy, 
with 1 or 0, corresponding to whether or not drug i is 
selected, and the maximum number of drug candidates 
in a combination is set to 2 as constrained by inequality 
7. Ri represents the number of cells responding to the ith 
drug, and T represents the total number of cells, indicat-
ing that the selected drug candidates should maximize 
the coverage of the responsive cells among all cells. εi 
represents the drug side effect and drug toxicity score of 
the ith drug, and the score is 1 if the drug is reported with 
more than ten high frequency (> 30%) side effects from 
the SIDER database [61], and 0 vice versa. � is the penalty 
term for the drug side effect score, which is defined as 0.1 
in this study.

Drug combination response evaluation in head and neck 
patient‑derived cell lines
We collected scRNA-seq data from three head and neck 
patient-derived cell lines (PDC) samples treated with five 
drug combinations at two different dosages (GSE117872) 
[62]. Each PDC scRNA-seq data was derived from a sin-
gle patient and five drug combinations were used inde-
pendently for PDC samples. The pseudo-bulk RNA-seq 
dataset used in comboSC-bulk and CMAP method was 
generated by aggregation of gene expression in all cells 
from scRNA-seq data with Seurat [49]. Specifically, 
comboSC used single-cell profiles and cell clusters to 
predict and rank drug combination responses for each 
patient cell line. ComboSC-bulk method used aggre-
gated gene expression from all cells to predict and rank 
combination drug response by comboSC, which will not 
use cluster-specific gene profiles. The CMAP method, 
which took DEGs as input to the CMap database for drug 
response ranking, also used aggregated gene expression 
for all cells, and then identified differential expressed 
genes to corresponding normal samples as input. Since 
the CMAP method only predicts a single drug response 
from L1000CDS [41], drug combinations are ranked by 
the average rank of two drugs in CMAP predictions. 
We evaluated the relative ranking of drug combination 
responses from comboSC, CMAP, and comboSC-bulk by 

Discounted Cumulative Gain (DCG) [63, 64]. The DCG 
score is calculated as follows:

where k is the number of the input drug combinations, 
and ri is the relative ranking difference between com-
boSC predictions and experimental validations, calcu-
lated as r = |rankpredict − rankexperiment| for each ri . The 
lower DCG score means a higher ranking of drug combi-
nation response.

Evaluating the performance of comboSC 
with the ClinicalTrials.gov database
To further evaluate the drug response predictions from 
comboSC, we searched comboSC drug combination pre-
dictions in all drug combinations registered on Clinical-
Trial.gov. To search the candidate drug combinations, 
the keywords “drug1,” “drug2,” and “combined with” using 
the ClinicalTrial.gov API (https://​clini​caltr​ials.​gov/​api/​
gui). For drug synonyms, the ClinicalTrial.gov API will 
auto-detect synonyms and return records for all drug 
synonyms. These drug combination records were fur-
ther filtered with “phase II clinical trials completed,” 
which excluded drug combinations in which a phase I 
trial failed due to toxicity. Then, we estimated the rank-
ing performance of comboSC drug combinations by the 
enrichment significance of the top 10% predictions regis-
tered in ClinicalTrials.gov, formulated as follows:

where N is the number of all comboSC drug predictions, 
M is 10% of N, n is the number of drug combinations reg-
istered on ClinicalTrials.gov, and k is the number of the 
top 10% drug combinations registered on ClinicalTrials.
gov.

Using comboSC with an interactive web interface
The comboSC web server provides user-friendly inter-
active access for both clinical and research users. It was 
developed with a framework of Bootstrap, Vue, jQuery, 
and D3js. For online users, comboSC will take the scRNA 
expression matrix and the corresponding cell metadata 
matrix (the same cells in the expression matrix) as input, 
and then the web server will run the entire pipeline task 
in the background and automatically send an email con-
taining the comboSC standard output, i.e., a data matrix 

(8)DCG =

k
∑

i=1

ri

log2(i + 1)

(9)p = 1−

k−1
∑

i=0

(

M
i

)

∗

(

N − M
n − i

)

(

N
n

)

https://clinicaltrials.gov/api/gui
https://clinicaltrials.gov/api/gui
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of the top-ranked combination therapy results with 
detailed annotations when the task is completed.

Results
Overview of comboSC framework
ComboSC is a computational prototype for tumor com-
bination therapy selection and response prediction based 
on personalized scRNA-seq data at a pan-cancer level. 
With the input of scRNA-seq profiles from individual 
tumor samples, comboSC provides the optimal person-
alized combination therapy with a response score after 
a series of calculations. comboSC mainly consists of five 
modules: (A) scRNA-seq data preprocessing, (B) per-
sonalized immune profile evaluation, (C) immune score-
based treatment strategy selection, (D) bipartite graph 
modeling for combinatorial drug response prediction, 
and (E) modeling with a multi-objective optimization 
strategy (Fig. 1). The following are short descriptions of 
comboSC pipeline:

Step 1: scRNA‑seq data preprocessing
Due to the complexity and diversity of input datasets 
from different sequencing platforms [56], comboSC 
first performs a series of data preprocessing procedures, 
including outlier detection, dropout elimination, batch 
effect removal, and data normalization (see the “Meth-
ods” section). Next, comboSC performs automated 
global cell clustering and annotation for immune cells, 
malignant cells, and stromal cells and then calculates the 
population size and expression levels of each cell group, 
which enables the recognition of sample heterogeneity 
and identification of cell types related to tumor immune 
microenvironment evaluation in downstream sections 
(Fig. 2a–d).

Step 2: Personalized immune profile evaluation
Learning from a previous study for clinical immu-
notherapy response prediction, comboSC first uses 
the signature genes of tumor-resilient T cells from 
scRNA-seq to calculate the immune score by the T 
cell resilience (Tres) model39. The immune score is 
then determined as high, middle, or low by certain 

threshold of the Tres score, representing complete 
response, partial response, or no response for immu-
notherapy (see the “Methods” section).

Step 3: Treatment strategy selection based on personalized 
immune score
For high immune score samples, comboSC recommends 
routine immunotherapy strategies such as immune 
checkpoint inhibitor treatment since the immune func-
tion of the sample is properly activated. For middle 
immune score samples, inspired by recent findings of 
the immunostimulatory potential of chemotherapy and 
targeted therapy [65, 66], comboSC recommends a com-
bination strategy with certain small molecules/drugs to 
enhance the potential response to immunotherapy. For 
low immune score samples that show a low potential 
response to immunotherapy, comboSC recommends the 
small molecule/drug combination therapy strategy to 
eliminate malignant cells directly.

Step 4: Bipartite graph modeling for combinatorial drug 
response prediction
Bipartite graph is a graph representation of two disjoint 
sets, like drugs and cells with edges only connecting 
nodes from different sets, as the relationship between 
drug and cell can be learned by graph modeling. The 
bipartite graph model has been successfully applied for 
discovering the gene and drug combinatorial effects 
[67, 68]. For individual samples with both middle and 
low immune scores, comboSC uses the bipartite graph 
network to infer the relationship between candidate 
drugs and different cell clusters. The basic idea of the 
bipartite graph network model applied here is to pro-
vide a maximum coverage of the diverse molecular cell 
phenotypes (both tumor and immune cell groups) with 
parsimonious drug combinations considering vari-
ous aspects including cell population size, cell trajec-
tory, drug synergy effect, drug side effect, drug toxicity, 
etc., rather than simply providing single drug or drug 
combinations effectively responded among the top 
majority tumor cell groups [69]. For low immune score 
samples, comboSC infers the individual drug response 

(See figure on next page.)
Fig. 2  Personalized immune profile evaluation. a The t-SNE plot shows the immune microenvironment of patients from single-cell transcriptome 
sequencing data using the comboSC workflow. The different colors represent the cell types annotated by comboSC. b The pie chart shows 
the proportion of cell groups in the tumor ecosystem and the population size of each cell group. c The heatmap shows the marker genes 
and their expression patterns in identified immune cells, malignant cells, and stromal cells. d A schematic description of tumor heterogeneity 
used in comboSC. e The proportion of CR, PR, and NR samples in 63 samples. f–h ROC curves of comboSC immune score from Tres model 
in f TCGA-SKCM, g Fraietta-CLL, and h GSE123814 datasets. H, M, and L in the figure indicate CR, PR, and NR samples, respectively. ROC curves 
and AUROC values for H–L, H-M, and M-L indicate the classification performance of CR versus NR, CR versus PR, and PR versus NR using comboSC 
immune scores, respectively. i The bar plot shows the precision of CR in top immune score samples for each dataset in the green left bar. The red 
right bar shows the threshold of top immune score samples in each dataset, which is defined as the proportion of CR samples
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Fig. 2  (See legend on previous page.)
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and drug-drug interactions to the levels of malignant 
cell subclusters from the bipartite graph network (see 
the “Methods” section). Similarly, for middle immune 
score samples, comboSC uses bipartite graph network 
modeling to infer the drug response to immune cell 
dynamics obtained from differential genes of cell tra-
jectories associated with immune cell exhaustion (see 
the “Methods” section).

Step 5: Solving the model with a multi‑objective optimization 
strategy
Taking advantage of the bipartite graph model, com-
boSC comprehensively integrates both treatment 
response and side effects such as antagonism and drug 
toxicity of drug combinations into the single-cell pro-
file by considering all target immune cell clusters or 
malignant cell clusters. The final optimization problem 
in comboSC is tractable and quadratic in the number of 
drugs because all other factors are combined into a sin-
gle heuristic objective function and the maximum num-
ber of drugs considered is two.

ComboSC predicts immunotherapy response by the Tres 
model
To evaluate the tumor immune profile and immuno-
therapy response prediction of comboSC, we applied 
comboSC to a comprehensive set of 119 tumor samples 
of 15 cancer types, including basal cell carcinoma (BCC), 
breast invasive carcinoma (BRCA), colorectal cancer 
(CRC), head and neck cancer (HNSC), uterine corpus 
endometrioid carcinoma (UCEC), non-small cell lung 
cancer (NSCLC), pancreatic adenocarcinoma (PAAD), 
skin cutaneous melanoma (SKCM), liver hepatocellular 
carcinoma (LIHC), adult acute myeloid leukemia (AML), 
uveal melanoma (UVM), thyroid carcinoma (THCA), 
kidney renal clear cell carcinoma (KIRC), synovial sar-
coma (SS), and osteosarcoma (OS). As shown in the 
workflow in Fig. 1, we first performed a global cell clus-
tering and identified T cells from the tumor microenvi-
ronment. Next, we calculated the immune scores of these 
samples generated by comboSC using the Tres model 
[39], an accurate immunotherapy response prediction 
model for both bulk RNA-seq and single-cell RNA-seq 
by modeling both immunosuppressive signals and pro-
liferation signals in T cells (see the “Methods” section). 
To estimate the consistency of immune score to the per-
sonalized immunotherapy response, we evaluated the 
immune scores using three collected datasets of 62 sam-
ples with known immunotherapy response, including one 
scRNA-seq dataset (GSE123814) with 11 BCC samples 
and 4 squamous cell carcinoma (SCC) samples, and 2 
bulk RNA-seq datasets, including 34 chronic lympho-
cytic leukemia (CLL) samples from Fraietta et al. [70] and 

13 SKCM samples from TCGA data portal [71]. Overall, 
9 complete response (CR) samples, 12 partial response 
(PR) samples, and 41 no response (NR) samples were col-
lected (Fig. 2e, Additional file 2: Table S5). We used the 
multiclass AUROC value to evaluate the performance 
of comboSC immune scores for three immunotherapy 
response groups in each dataset. Overall, comboSC 
immune scores showed high accuracy in three datasets, 
with corresponding AUROC values of 0.795, 0.948, and 
0.74 in three datasets, respectively (Fig. 2f–h), and 0.814 
overall. Specifically, we further calculated the accuracy of 
comboSC immune score for the CR group, which was not 
evaluated in the original Tres model study. Since the pro-
portion of CR samples varies between datasets, we used 
the fraction of CR samples in each dataset as the thresh-
old and showed a precision of 0.6 (3/5), 1 (1/1), and 1 
(2/2) in CLL, SKCM, and SCC datasets, respectively, but 
did not identify CR in BCC dataset (0/1), which showed 
the precision of 0.667 (6/7) in all evaluated datasets and 
revealed a high precision of comboSC immune score for 
complete response sample classification (Fig. 2i). Overall, 
the Tres model can be taken as an acceptable model for 
patient stratification in terms of single-cell RNA-seq with 
comprehensive validation support. Therefore, finally, we 
applied the Tres model to 119 tumor single-cell RNA-seq 
datasets and identified 20 high, 44 middle, and 55 low 
immune score samples.

ComboSC provides accurate response predictions of small 
molecule drug combination therapy for samples with low 
immune scores
In this study, we performed a comprehensive analysis 
to show the utility of comboSC for 55 samples with low 
immune scores. Small molecule drug combinations are 
recommended as these samples are demonstrated to have 
a limited immune response.

We started by applying comboSC to a BCC single-
cell RNA-seq dataset before anti-PD1 immunotherapy 
(GSM3511756) [72] as a demonstration example to show 
the underlying processing logic of comboSC. These 
samples are assigned a low immune score by comboSC, 
indicating that it is suitable to use small molecule drug 
combinations for personalized therapy. After the data 
preprocessing procedure, a global landscape was auto-
matically drawn by comboSC, indicating the proportions 
of malignant cell populations and tumor microenviron-
ment in the sample (Fig. 3a). ComboSC performed a drug 
response-driven graph clustering method on malignant 
cells (see the “Methods” section), which optimized cell 
clusters by grouping the cells of similar drug response 
into the same cell cluster. The drug response-driven 
graph clustering method is robust to variable graph 
clustering parameters and identifies five heterogeneous 
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malignant cell subclusters with different drug sensitivi-
ties to different drugs (Fig. 3a–c). Specifically, sepantro-
nium bromide, a small molecule proapoptotic agent 
with potential antineoplastic activity to deplete energy 
reserves in metabolically active tumor cells and induce 
tumor cell apoptosis, showed high drug sensitivity in the 
majority of the cell clusters and most of all cells (1179 
cells out of a total of 1379 cells) but lower sensitivity 
than daporinad, another small molecule with potential 
antineoplastic and antiangiogenic activities to induce 
extrinsic or intrinsic apoptotic pathways and tumor cell 
apoptosis, in cell cluster 2 (218/1397) (Fig. 3b). Using the 
bipartite graph model, comboSC predicted optimal drug 
combinations for the BCC sample by jointly considering 
the malignant cell markers and synergistic drug combi-
nation candidates. Finally, comboSC identified the com-
bination of sepantronium bromide and daporinad as the 
top prediction (Fig. 3d). Rather than simply providing a 
single drug or drug combination for an effective response 
among the top two tumor cell groups that account for the 
majority of tumor cells [69], comboSC identified drug 
combinations in response to most tumor cell groups with 
different molecular phenotypes.

Of note, recently, Daniel and his collaborators recently 
reported a single-cell RNA-seq-based transfer learning 
method to optimize drug combinations for BRCA sam-
ples [69], which aims to find a drug or a combination 
that is most effective among the top two cell lines rep-
resenting the majority of tumor cells. To compare with 
this transfer learning-based method, we applied com-
boSC to a single-cell BRCA dataset [73] analyzed in their 
study using the same drug candidate combinations [16]. 
We first identified eleven tumor subclusters by the drug 
response-driven clustering (Fig. 3e). Then, we compared 
the drug response in target cell clusters for top drug 
combinations identified by the transfer learning-based 

method and comboSC. The top two drugs identified by 
the transfer learning-based method, AZD7762 and gem-
citabine, showed similar responses in seven subclusters 
(646/894), and the corresponding drug combination did 
not show an advantage over the single top drug gemcit-
abine (Fig. 3f ). In contrast, the comboSC top drug combi-
nations identified by comboSC, shikonin and trametinib, 
showed a higher response in ten of eleven subclusters 
(802/894) than those of the transfer learning-based 
method, which indicated the advantage of predicting 
drug combinatorial effects with a higher resolution of 
tumor subgroups by comboSC (Fig. 3g).

Next, we applied comboSC to all 55 tumor samples 
to predict small molecule drug combination therapy, as 
these samples were assigned low immune scores and were 
predicted to have a limited immunotherapy response by 
comboSC. Taking advantage of bipartite graph represen-
tation along with multi-objective optimization, comboSC 
required less computational time and resources than the 
traditional computations: method for optimizing drug 
combination prediction (Fig.  3h). We further demon-
strated the validity of the predicted drug combination by 
comboSC in the following three ways using literature evi-
dence, clinical trial data, and gold standard drug combi-
nation perturbation data in patient-derived cell lines, and 
a detailed summary of these samples can be accessed in 
Additional file 2: Tables S2 and S5.

(1)	 Among the prediction results, many known drug 
combinations with reported experimental validation 
evidence are ranked in the top predictions by com-
boSC from approximately 100,000 candidate drug 
combinations. These combinations served as an effi-
cient therapeutic strategy with synergies, reduced 
toxicity, or prevention of tumor recurrence. For 
example, comboSC predicted a combination therapy 

Fig. 3  ComboSC provides accurate response predictions for small-molecule drug combination therapy. a t-SNE plot for immune cells 
and malignant cells in sample su006 (GSM3511756). The colors on the left represent the different cell groups annotated by comboSC. The 
circled malignant cells in the left t-SNE plot are further divided into five subclusters in the right circle according to their various drug responses. 
b Radar map showing distinct drug responses of daporinad and sepantronium bromide in five malignant cell subclusters. c Overview of drug 
response-driven malignant cell graph clustering. ComboSC repeats the iteration for different graph cluster resolution until the drug response 
is maximized. d Top-ranked drug combinations in comboSC predictions for su006. The height of the bars represents the drug combination 
score. e UMAP plot for eleven malignant cell clusters in a breast cancer sample (GSE176078). f Radar map showing distinct drug responses 
of transfer learning-based method for the top two drugs AZD7762 and gemcitabine in eleven malignant cell subclusters. The drug response 
score at the black highlight circle is 12, equal to the black highlight circle in g. g Radar map showing the distinct drug responses of comboSC 
for the top drug combination shikonin and trametinib in eleven malignant cell subclusters. The drug response score at the black highlight circle 
is 12, equal to the black highlight circle in f. h Comparison of calculation time under different drug numbers between comboSC optimization 
and the traditional iterative method. i This bubble chart shows the count and enrichment significance of the top 10% of comboSC predictions 
registered in the ClinicalTrials.gov database. The x-axis is the fold enrichment of clinically validated drugs in the top 10% of comboSC predictions 
compared to all comboSC predictions, and the y-axis is the dataset. The color represents the p value of the enrichment analysis. j Performance 
of comboSC, comboSC-bulk, and CMAP predictions in three PDC datasets. The y-axis is the DCG score, with a lower DCG score indicating higher 
ranking accuracy

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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of panobinostat and gemcitabine with a synergistic 
effect for NSCLC sample p4 in GSE127465 (ranked 
5th). Gemcitabine is an antimetabolite that has 
demonstrated activity in the treatment of NSCLC, 
and numerous preclinical studies have demon-
strated enhanced antitumor synergy when gem-
citabine is combined with panobinostat [74]. For 
sample lbm2 in GSE143423, comboSC predicted the 
combination therapy of vinorelbine and gemcitabine 
with reduced toxicity (ranked 8th). Gemcitabine and 
vinorelbine have different mechanisms of antitumor 
activity, good therapeutic indices, and nonoverlap-
ping toxicities. Their combination has shown prom-
ising results for the treatment of advanced NSCLC 
with fewer side effects [75]. For sample T7 in 
CRA001160, comboSC predicted gemcitabine com-
bined with mitomycin-C therapy to prevent tumor 
recurrence (ranked 9th). It is interesting to see that 
many patients develop tumor recurrence under 
gemcitabine monotherapy, while the combination 
of gemcitabine and mitomycin-C could offer dura-
ble recurrence-free survival to tumor patients [76]. 
Overall, this literature evidence demonstrates the 
reliability of comboSC in terms of predicting drug 
combinations with synergy, reduced side effects, and 
tumor recurrence prevention.

(2)	 For all 55 tumor samples, we evaluated drug com-
bination predictions based on recommended drug 
combinations for distinct cancers from the Clini-
calTrials.gov database. If the drug combinations 
predicted by comboSC from the GDSC and CMap 
databases [10] have been suggested to be effective 
or registered in clinical trials on ClinicalTrials.gov, 
this prediction will be considered relatively reliable. 
To this end, we performed an enrichment analysis 
of the predictions of comboSC, and it is encour-
aging to find that the top drug combinations from 
comboSC showed significant enrichment (p < 0.05) 
in drug combinations proven active in clinical trials, 
which indicates the consistency of the top-ranked 
drug combinations predicted by comboSC with that 
of the registered drug combinations in clinical trials 
(Fig. 3i).

(3)	 To further investigate the performance of the rank-
ing of drug combination predictions by comboSC, 
we compared the performance of comboSC, CMAP, 
and comboSC-bulk on a benchmark drug pertur-
bation single-cell dataset of three patient-derived 
cell lines (PDC) derived from head and neck can-
cer patients (GSE117872) [62], where CMAP and 
comboSC-bulk took aggregated scRNA profiles 
as input. We used the rank of the response of the 
drug combinations to three PDCs measured from 

the previous study as the gold standard, including 
drug combinations of docetaxel/epothilone B, doc-
etaxel/gefitinib, gefitinib/epothilone B, epothilone 
B/PI-103, and doxorubicin/vorinostat. As clinicians 
and researchers are more concerned or interested 
in drug combination predictions of higher ranks, 
we applied a metric of discounted cumulative gain 
(DCG), which represents the inconsistency between 
predicted rankings and actual rankings and gives 
higher weight to higher ranks, to evaluate the drug 
combination rankings for three benchmark meth-
ods, with lower DCG scores indicating higher accu-
racy in the ranking of drug combination predictions 
(see the “Methods” section). Of the three tumor cell 
lines, comboSC consistently showed lower DCG 
scores and higher accuracy than the other two 
methods (Fig. 3j), indicating the advantages of uti-
lizing single-cell data for drug combination predic-
tion in comboSC.

ComboSC uncovers the potential of tumor immune 
microenvironment recovery from immune cell exhaustion 
dynamics for samples with middle immune scores
Of the patients who showed a treatment response to 
immunotherapy, only a fraction showed a complete 
response to immunotherapy alone, and most of the non-
responses and partial responses were caused by exhaus-
tion of T cells [77]. Therefore, in this study, we further 
investigated the relative exhaustion levels of immune 
cells in 44 tumor samples with a middle immune score, 
where these samples have a partial immune response that 
has the potential to be enhanced. We identified signifi-
cant differential immune exhaustion cell types and their 
cell trajectories in these middle immune score samples 
(Fig. 4a). Next, comboSC used a bipartite graph network 
to infer the relationship between drugs and immune cell 
trajectories and then predicted the drug combination 
response that can recover or enhance their immune sta-
tus for immunotherapy. According to previous literature 
and top differential immune exhaustion cell types among 
samples, comboSC selected differentially expressed genes 
(DEGs) of four immune cell trajectories as drug targets to 
activate the immune response by immune cell recovery. 
These cell trajectories include (1) active T cell exhaustion, 
(2) memory T cell exhaustion [46], (3) direction of tumor-
associated macrophage (TAM) differentiation [43], and 
(4) direction of cancer-associated fibroblast (CAF) dif-
ferentiation (Fig.  4b–d). Interestingly, we identified one 
or more trajectories with different gene alteration levels 
in all 44 middle immune score samples (Fig. 4a), indicat-
ing that all these intermediate responsive samples have 
at least one trajectory to target to recover their immune 
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status. Then, using the drug-gene relationships from the 
pharmacogenetic search engine L1000CDS [41] (Fig. 4e), 
comboSC predicted the candidate drug response to the 
dynamics of the selected trajectories for each sample.

Similarly, to evaluate the drug combination predic-
tion by comboSC for middle immune score samples, we 

started by applying comboSC to identify the optimal drug 
combination for su008 of a BCC patient (GSE123814) as 
an example. First, we evaluated the immune profile of 
the su008 sample and found that the sample belonged to 
the middle immune level, indicating a partial response 
to immunotherapy. Combination therapy with small 

Fig. 4  ComboSC uncovers the potential of tumor immune microenvironment recovery from immune cell exhaustion dynamics. a The heatmap 
shows trajectory scores of 44 middle immune score samples in four immune exhaustion cell trajectories. The gray color indicates that the trajectory 
does not exist in the sample. b Trajectory of active T cell exhaustion and memory T cell exhaustion. c Trajectory of tumor-associated macrophage 
(TAM) differentiation. d Trajectory of cancer-associated fibroblast (CAF) differentiation. e Drug-gene relationship used in comboSC, searched 
from the L1000CDS search engine. f The volcano plot identifies the differentially expressed genes along with the immune cell exhaustion trajectory 
in su008. Genes with p value < 10−5 and fold change > 2 are colored red. g Trajectory of T cell exhaustion in T15. h The volcano plot identifies 
the differentially expressed genes along with the immune cell exhaustion trajectory in T15. Genes with p value < 10−5 and fold change > 2 are 
colored red. i Drug effect of ivermectin to differentially expressed genes in Fig. 4h. The arrows and nocks between drug and genes represent 
the activation and suppression function of ivermectin to candidate genes, respectively. The red and blue colors of the gene labels represent 
upregulated and downregulated in the T cell exhaustion trajectory of T15, respectively. j This bubble chart shows the count and enrichment 
significance of the top 10% comboSC predictions registered in the ClinicalTrials.gov database. The x-axis is the fold enrichment of clinically validated 
drugs in the top 10% comboSC predictions compared to the ratio (60/1280) of validated drugs in all CMap drugs (Additional file 2: Table S4), 
and the y-axis is the dataset name and sample ID (Additional file 2: Table S2). The color represents the p value from the enrichment analysis, 
and the size represents the number of clinically validated drugs in the top 10% comboSC predictions
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molecule drugs is required to improve the immunity 
level and treatment response to immunotherapy in this 
sample. Luckily, all four immune exhaustion trajecto-
ries above were identified in this sample, and the DEG 
analysis showed that the immune-related target gene 
of immunotherapy LAG3 [78] was altered along with 
the target cell trajectory (Fig.  4f ). Gene Ontology (GO) 
analysis also showed that these DEGs were significantly 
enriched in immune-related functions such as T cell acti-
vation and regulation of lymphocyte activation (Addi-
tional file 1: Fig. S2). As a result, 17 drugs were predicted 
to reserve these trajectories and recover immune status 
by targeting their DEGs. After obtaining the various drug 
responses of the trajectories, a bipartite graph model was 
built and solved. For patient su008, entinostat, a benza-
mide histone deacetylase inhibitor targeting HDAC1 and 
HDAC3 treated as monotherapy [79] or combinatorial 
drug together with immunotherapy to various cancers 
[80, 81], was ranked 4th in comboSC prediction results 
as a drug that can be paired with immunotherapy. Also, 
a recent study reported the role of entinostat in inducing 
changes in multiple myeloid cell types, reducing immu-
nosuppression, increasing antitumor immune responses, 
and improving sensitivity to immunotherapy for HER2+ 
breast cancer [82], which indicated the combinatorial 
effects of entinostat with immunotherapy for middle 
immune score samples.

Next, we applied comboSC to 44 tumor samples with 
a middle immune score, and treatment regimens that 
could be combined with immunotherapy were predicted 
by comboSC. Interestingly, almost all the small mol-
ecules we screened from CMap [10] by comboSC were 
associated with immunotherapy, and most of them had 
a function of improving the immune microenvironment. 
For example, comboSC found the trajectory of active 
T cell exhaustion and memory T cell exhaustion in the 
sample Endo2 from GSE139555. Imatinib mesylate 
(STI-571), which enhances the activation of naive anti-
gen-specific T cells and restores the responsiveness of 
tolerant T cells from tumor-bearing hosts [83], was one 
of the top predictions (ranked 2nd) by comboSC. For 
sample P1 in GSE117570, comboSC found the immune 
trajectory of TAM differentiation, the gene signature of 
which is highly similar to the estrone pathway. Anties-
trogens combined with immunotherapy that have been 
found to have the function of the M1 phenotype of TAM 
polarization and increase immunotherapy response can 
be used for the treatment of this patient [84]. Further-
more, for sample T15 in CRA001160, comboSC iden-
tified a T cell exhaustion trajectory as most T cells are 
exhausted (Fig.  4g), and ivermectin was ranked 1st in 
comboSC predictions. We further analyzed the person-
alized mechanism of the sample that can be intervened 

by ivermectin in this case. Firstly, comboSC identified 
the differential expressed genes of the T cell exhaus-
tion trajectory in this patient (Fig.  4h). Secondly, refer-
ring to the LINCS database, we found that the top 1st 
prediction ivermectin showed a suppressive function 
to downregulated genes and an activation function to 
upregulated genes of the T cell exhaustion trajectory 
(Fig.  4i), indicating the mechanism of ivermectin syn-
ergized with immunotherapy by repression of the T cell 
exhaustion trajectory. Interestingly, two top differential 
genes, STNM1 and RSG1 (Fig. 4h), are all reported to be 
related to immunotherapy. STNM1 has been reported 
as a poor prognostic marker in various cancers and can 
predict poor clinical outcomes of immunotherapy [85], 
and RSG1 has been reported as an oncogenic marker 
for poor immune microenvironment [86]. In addition, 
as an FDA-approved anti-parasitic drug, a recent study 
reported that ivermectin can induce immunogenic can-
cer cell death (ICD) and robust T cell infiltration, con-
vert cold tumors into hot, and synergize with immune 
checkpoint blockade for the treatment of breast cancer 
[87]. For sample P5 in GSE150660, comboSC identi-
fied two immune trajectories as TAM differentiation 
and active T cell exhaustion, and predicted fluvastatin 
as one of the top drug predictions. We further analyzed 
the personalized mechanism of the sample that can be 
intervened by fluvastatin in this case. Among differen-
tial genes of TAM differentiation, hypoxia-inducible fac-
tor 1 subunit alpha (HIF1α), a key gene of the hypoxia 
signaling pathway, was reported as direct target of flu-
vastatin [88] and regulated the TAM differentiation 
by cell hypoxia [89]. Another two upregulated genes of 
the active T cell exhaustion trajectory, UBB and PSM1, 
were also functional in the pathway of cell response of 
hypoxia. The top drug prediction fluvastatin identified 
by comboSC, reported to augment immunotherapy by 
suppressing the hypoxic tumor environment [90], indi-
cates that the mechanism of synergized drug effect with 
immunotherapy lies in reducing cell hypoxia response as 
well as TAM differentiation and activating T cell exhaus-
tion. Collectively, these mechanism analyses provide fur-
ther support for our predictions.

Furthermore, we also validated comboSC drug predic-
tions for middle immune score patients with the Clinical-
Trials.gov database, as in the aforementioned study, and 
found significant enrichment of the top drugs predicted 
by comboSC registered in the ClinicalTrials.gov database 
(Fig. 4i). These recommended perturbations with a func-
tion of improving immunity demonstrated the effective-
ness of comboSC for middle immune level patients. A 
detailed summary of all these samples can be accessed in 
Additional file 2: Table S2.
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Finally, we evaluated the predictions of comboSC 
drug ranking in vivo using pretreatment samples which 
have been treated with ICB combinatory therapy. We 
first applied comboSC to a single-cell RNA-seq data-
set (SCP1288) with three RCC patients treated with 
combinatory therapy of ICB and tyrosine kinase inhibi-
tors (TKI) imatinib [91], a drug that inhibits Treg cells 
and augments immunity in tumor [92], while only P55 
showed response to the combinatory therapy. Com-
boSC correctly classified P55 as a middle immune 
score, and successfully identified imatinib in com-
boSC top predictions (ranked 13th in 1288 candidates), 
which was consistent with the origin study. We next 
used comboSC for another single-cell RNA-seq dataset 
(GSE169246) with 6 TNBC patients treated with com-
binatory therapy of ICB and paclitaxel [65]. We also 
found higher (p < 0.05) comboSC scores of paclitaxel in 

responders for combinatory therapy than those non-
responders (Additional file  1: Fig. S3), indicating the 
potential of comboSC for predicting optimal personal-
ized drugs for combinatory ICB therapy.

ComboSC web server
To facilitate the broad utility of comboSC for clinical 
and research users, we developed an interactive web 
server for the quick application of comboSC with tumor 
scRNA-seq data as input (Fig.  5a). All users need to do 
is upload the gene expression matrix along with the cell 
metadata matrix and the gene metadata matrix obtained 
by single-cell RNA-seq of the tumor sample (Fig.  5b). 
Then, comboSC will run and complete all the tasks in the 
backend and finally provide the predicted combination 
therapy results to the users (Fig. 5c–e). Such a one-stop 
platform is expected to greatly facilitate personalized 

Fig. 5  Demo of ComboSC web server. a The homepage of the comboSC web server. b The data analysis page for the user, with the input 
of expression matrix, cell metadata, gene metadata, and parameters. c The demo output of high immune score samples. d The demo output for low 
immune score samples. Drug combinations in the first column are ranked by the score in the third column. e The demo output for middle immune 
score samples. The numbers in the first column are PubChem CIDs and are ranked by the score in the third column
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tumor treatment at single-cell granularity, serving as a 
complementary drug screening technique to those of 
in  vivo and ex  vivo experimental screenings like PDXs, 
organoids, etc.

Discussion
scRNA-seq enables the identification of tumor heteroge-
neity from different patients with the same disease and 
different cells in the same patient. We introduced a com-
putational prototype, comboSC, that performs tumor 
combinatorial therapy optimization based on personal-
ized scRNA-seq data. Taking advantage of the single-
cell technique, comboSC first evaluates the immune 
microenvironment of the tumor sample by the immune 
score of the Tres model and then matches the immu-
notherapy or target therapy to the individual immune 
score of the tumor sample. Next, for tumor samples that 
are not suitable for direct immunotherapy, comboSC 
uses a bipartite graph model to optimize the combina-
torial therapy response. Specifically, for tumor samples 
with low immune scores (no immunotherapy response), 
comboSC performs drug combinatorial optimization for 
the response to complex cell groups in  vivo. For tumor 
samples with medium immune scores (partial immuno-
therapy response), comboSC uses an immune recovery 
strategy and performs bipartite graph modeling of the 
four selected immune-related trajectories, considering 
the current status with RNA expression and future trends 
with RNA velocity, to select small molecules that can be 
paired with ICB to boost immunotherapy. Finally, com-
boSC provides therapy combinations ranked by response 
score. The whole pipeline of comboSC could be easily 
applied to customized data with comboSC online web 
server.

Although we applied comboSC to various tumor sam-
ples and tumor types, there are still limitations in the cur-
rent version of comboSC. First, due to the limited dataset 
sizes for rare cancer types used in the building of com-
boSC, the application of comboSC for rare cancer types 
should be carefully investigated. Second, comboSC only 
analyzes four immune exhaustion trajectories, which is 
likely an oversimplification of complex immune exhaus-
tion mechanisms. More immune exhaustion pathways 
should be considered with future discoveries from the 
tumor immune microenvironment. Thirdly, comboSC 
optimized the drug response to different cell groups, 
however neglected the simultaneous effect of targeted 
drugs on both tumor and immune cells. Several future 
updates of comboSC are expected, including expansion 
for broader application with emerging tumor single-cell 
datasets and extension for new tumor immune-related 
mechanisms.

It should be noted that comboSC can be used as an 
efficient screening framework to predict potential drug 
combination therapies for personalized tumor treat-
ment; however, further large-scale experimental vali-
dation using various model systems, including PDXs or 
organoids, is needed. Nevertheless, comboSC will greatly 
accelerate the whole personalized treatment procedure, 
reducing screening time from a large drug combination 
space and saving the valuable treatment time of patients, 
with the increasing cost reduction of single-cell sequenc-
ing. In summary, comboSC is a novel and inspired pro-
totype for personalized microenvironment evaluation 
and tumor combinatorial therapy optimization at single-
cell granularity. The rationale of comboSC as well as the 
developed web server of comboSC is expected to greatly 
facilitate personalized clinical tumor therapy and pre-
cision oncology with the integration of the underlying 
information from the personalized cell landscape.

Conclusions
In summary, comboSC offers a practical and compre-
hensive computational prototype, along with a proof-
of-concept study, designed to predict potential drug 
combinations. These predictions can then be further 
validated through experiments and applied in clinical set-
tings using single-cell transcriptome data. This approach 
aims to streamline and expedite personalized tumor 
treatment by minimizing screening time within the vast 
drug combination space. As a result, valuable treatment 
time for individual patients can be saved.
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