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Abstract 

Single-cell perturbation (scPerturbation) sequencing techniques, represented by single-cell genetic perturbation (e.g. Perturb-seq) and single- 
cell chemical perturbation (e.g. sci-Plex), result from the integration of single-cell toolkits with conventional bulk screening methods. These 
inno v ativ e sequencing techniques empo w er researchers to dissect perturbation effects in biological systems at an unprecedented resolution. 
Despite these advancements, a notable gap exists in the a v ailability of a dedicated database for exploring scPerturbation data. To address 
this gap, we present PerturBase, the most comprehensive database designed for the analysis and visualization of scPerturbation data ( http: 
// www.perturbase.cn/ ). PerturBase curates 122 datasets from 46 publicly available studies, covering 115 single-modal and 7 multi-modal datasets 
that include 24 254 genetic and 230 chemical perturbations from approximately 5 million cells. The database, comprising the ‘Dataset’ and 
‘P erturbation ’ modules, provides insights into various results, encompassing qualit y control, denoising , differential gene expression analysis, 
functional analysis of perturbation effects and characterization of relationships between perturbations. All the datasets and results are presented 
on user-friendly, easy -to-bro wse w eb pages and can be visualiz ed through intuitiv e and interactiv e plot and table f ormats. In summary, PerturB ase 
stands as a pioneering, high-content database intended for searching, visualizing and analyzing scPerturbation datasets, contributing to a deeper 
understanding of perturbation effects. 
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Introduction 

Perturbation experiments attempt to establish causal links be-
tween perturbations and responses, which can be broadly cat-
egorized into two classes: genetic perturbations and chemical
perturbations. Perturbation-based omics has become a pow-
erful tool for studying gene functions and a cornerstone of
the pharmaceutical drug discovery pipeline ( 1–3 ). For exam-
ple, the Library of Integrated Network-based Cellular Sig-
natures database piloted by the Broad Institute has become
a rich data source for genetic and chemical perturbation,
and clustered regularly interspaced short palindromic repeat
(CRISPR) screening techniques have been broadly used for
drug target identification and drug resistance research ( 4–
6 ). Nonetheless, conventional perturbation technology has at
least two major limitations. First, the readout is generally re-
stricted to gross cellular phenotypes, e.g. proliferation, mor-
phology or a highly specific molecular readout. Second, even
in conjunction with more comprehensive molecular phenotyp-
ing methods, such as next-generation sequencing, a limitation
of bulk assays is that cells ostensibly of the same ‘type’ can
exhibit heterogeneous responses ( 7–9 ). 

Single-cell transcriptome sequencing (scRNA-seq) repre-
sents a form of high-content molecular phenotyping that,
when combined with conventional perturbation technology,
can overcome both limitations. In 2016, single-cell CRISPR
(scCRISPR), which couples CRISPR screening and scRNA-seq
to enable pooled genetic screens at large-scale single-cell reso-
lution, was developed ( 10–12 ). The key technical innovation
of scCRISPR is the creative design of the lentiviral vector to
allow the identification of the sgRNA in each cell by sequenc-
ing. Moreover, in 2019, sci-Plex, a method that couples chemi-
cal screening with scRNA-seq to cost-effectively quantify tran-
scriptional responses to hundreds of chemicals in parallel, was
proposed by Srivatsan et al . ( 9 ). In contrast to traditional per-
turbation screening, single-cell perturbation (scPerturbation)
allows high-content phenotypes to be obtained, thus facilitat-
ing the dissection of complex effects of genes and chemicals
in heterogeneous cell populations. 

Currently, numerous alternative scPerturbation platforms
have emerged. Based on readout omics, these platforms can
be classified into four primary categories: transcriptome-,
epigenome-, proteome- and imaging-based platforms. The
mainstream scPerturbation platforms are transcriptome-
based platforms that combine screens with scRNA-seq, such
as Perturb-seq and sci-Plex ( 9–13 ). Transcriptome-based plat-
forms have evolved rapidly, with innovations such as CROP-
seq optimizing Perturb-seq vector design and reducing com-
plexity and cost ( 14 ). Genome-scale Perturb-seq, introduced
by Replogle et al ., enables unbiased and comprehensive pro-
filing of genome-scale genetic perturbations affecting 9867
genes ( 15 ). Moreover, by applying the technique to multi-
omics data simultaneously, multi-modal scPerturbation was
developed. In 2019, Rubin et al . developed an epigenome-
based scPerturbation named Perturb-A T AC, which combines
CRISPR interference or knockout with chromatin accessibil-
ity profiling in single cells based on the simultaneous de-
tection of CRISPR guide RNAs and open chromatin sites
by assay of transposase-accessible chromatin with sequenc-
ing (A T AC-seq) ( 16 ). Mimitou et al . developed ECCITE-seq,
which allows simultaneous detection of transcriptomes, pro-
teins, clonotypes and CRISPR perturbations from single-cell
preparations ( 17 ). Recently, new multi-modal screening plat-
forms called Perturb-map and Perturb-FISH, which combine 
CRISPR with imaging and spatial transcriptomics, have been 

developed to identify genetic determinants of tumor composi- 
tion, organization and immunity ( 13 ,18 ). 

scPerturbation is widely applied in various fields because 
of its powerful capabilities, including linking genotype to 

phenotype ( 11 , 12 , 15 ), dissecting genetic regulations and de- 
ciphering drug mechanisms. For example, Jaitin et al . re- 
vealed the effects of 22 transcription factors on the regula- 
tion of antiviral, inflammatory or developmental processes in 

lipopolysaccharide-stimulated bone marrow cells by CRISP- 
seq ( 12 ). Perturb-A T AC, Spear-A T AC and CRISPR-sciA T AC 

could reveal epigenetic landscape remodelers in human B lym- 
phocytes and leukemia cells ( 19 ,20 ). Using a perturbation 

map, Dhainaut et al . discovered that knockout TGFB2 in lung 
cancer cells promoted tumor microenvironment remodeling 
and immune exclusion ( 18 ). In combination with sci-Plex, Sri- 
vatsan revealed substantial intercellular heterogeneity in re- 
sponse to specific chemicals and found that the main transcrip- 
tional responses to HDAC inhibitors involved cell cycle ar- 
rest ( 9 ). However, analyzing scPerturbation data presents sig- 
nificant challenges due to its inherent noise, which primarily 
stems from two main sources: (i) Cellular heterogeneity: Even 

within a supposedly homogeneous population, cells can ex- 
hibit significant variability in gene expression due to differ- 
ences in cell cycle stage, metabolic state and microenviron- 
mental influences. (ii) Variable perturbation efficiency: The ef- 
ficiency of the perturbation can vary from cell to cell, leading 
to inconsistent biological responses. This inherent noise can 

lead to the identification of false positives or false negatives,
reducing the statistical power. To address these challenges, a 
series of specialized bioinformatic methods for denoising have 
been developed, such as Mixscape for non-perturbed cell fil- 
tering and GSFA for latent component factor decomposition 

( 21–23 ). 
Despite the widespread use of scPerturbation, a significant 

gap remains in the availability of a dedicated database for 
exploring and querying scPerturbation data. Recently, scPer- 
turb has been developed for scPerturbation data exploration; 
however, its utility is constrained by the absence of dedi- 
cated features for querying, visualizing and further interpret- 
ing the data ( 24 ). In addition, we acknowledge the limita- 
tion of the dataset selection window in scPerturb, which stops 
at 2021. This is a significant advantage of PerturBase, as 
it includes more recently generated and published datasets.
By including the latest data, PerturBase ensures that users 
have access to the most up-to-date information, enhancing 
its utility and relevance in the field. To this end, we intro- 
duce PerturBase, the most comprehensive database that inte- 
grates 122 scPerturbation datasets from 46 publicly studies.
The molecular readouts of these datasets include 115 single- 
modal datasets and 7 multi-modal datasets. Among these 
datasets, 101 datasets were subjected to genetic perturbations,
whereas the remaining 21 datasets were subjected to chem- 
ical perturbations. A total of 113 of the 122 datasets were 
derived from Homo sapiens studies. Among the 122 datasets 
collected in PerturBase, 61 contained combinatorial pertur- 
bations ( Supplementary Table S1 ). PerturBase features two 

modules: the ‘Dataset’ module and the ‘Perturbation’ mod- 
ule. The ‘Dataset’ module facilitates streamlined exploration 

of all 122 datasets, offering filters by organism, modality, per- 
turbation type, perturbation name and perturbation effect. Af- 
ter selecting a dataset of interest, users can gain insights into 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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 range of analysis results, including (i) quality control, (ii)
enoising, (iii) differential gene expression analysis, (iv) func-
ional analysis of perturbation effects and (v) characteriza-
ion of relationships between perturbations. Moreover, the
Perturbation’ module integrates a range of analysis results
cross datasets of a chosen perturbation, including (i) quality
ontrol, (ii) denoising, (iii) differential gene expression analy-
is and (iv) functional analysis of perturbation effects. These
esults provide a comparison of perturbations across various
ellular contexts, offering valuable insights into their effects.
n summary, PerturBase stands as the pioneering high-content
atabase designed for the searching, visualization and anal-
sis of scPerturbation data. Its extensive data repository and
iverse functionalities make it an indispensable resource in the
cPerturbation research community. 

aterials and methods 

ata collection 

n our current study, the scPerturbation datasets were ob-
ained primarily through three methods (Figure 1 A). (i) We
ollected the scPerturbation data through a large-scale search
n the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.
ov/ geo/ ) ( 25 ), Zenodo ( https://zenodo.org ) and Figshare
 https://figshare.com ) using keywords such as ‘perturb seq’,
high content crispr screening’, ‘single-cell crispr screening’
nd ‘single-cell perturbation’. (ii) We identified 10 represen-
ative scPerturbation platforms in the scPerturbation field
hrough comprehensive review articles, namely Perturb-seq
 10 ,11 ), CRISP-seq ( 12 ), CROP-seq ( 14 ,26 ), Mosaic-seq ( 27 ),
erturb-A T AC ( 28 ), ECCITE-seq ( 29 ), direct-capture Perturb-
eq ( 30 ), Direct-seq ( 31 ), TAP-seq ( 32 ) and SHARE-seq ( 33 ).
pecifically, we referred to the articles ‘Massively parallel
RISPR-based genetic perturbation screening at single-cell

esolution’ by Cheng et al . ( 7 ) and ‘High-content CRISPR
creening’ by Bock et al . ( 8 ). We subsequently obtained stud-
es using single-cell CRISPR screening platforms by determin-
ng the articles citing the representative platforms through
oogle Scholar. The BioProject ( 34 ) accession numbers of the

tudies were retrieved using NCBI’s eSearch application pro-
ramming interface. We subsequently manually confirmed the
resence of a scPerturbation dataset from the identified Bio-
roject accession number. (iii) The scPerturbation data men-
ioned in scPerturb and sc-pert were also contained in Pertur-
ase ( 24 ,35 ). We downloaded the raw data, and a uniform
reprocessing approach defined by PerturBase was applied.
n summary, PerturBase contains 122 scPerturbation datasets
Figure 1 A and Supplementary Table S1 ). In terms of pertur-
ation type, the collection encompasses 24 254 genetic and
30 chemical perturbations (Figure 1 B, bottom right). The
ame gene perturbations across different datasets are counted
nce, whereas different doses of the same drug are considered
eparate chemical perturbations. The perturbation modality
overs 115 single-modal data points and 7 multi-modal data
oints. In terms of species, it contains H . sapiens and Mus
usculus . Notably, most perturbations are predominantly ap-
lied in a single dataset, particularly in the case of genetic per-
urbation (Figure 1 B). The total number of cells per dataset
s usually restricted by experimental limitations, although it
as increased over time ( Supplementary Figure S1 ). There-
ore, there is a trade-off between the number of perturbations
nd the mean number of cells per perturbation in a dataset
( Supplementary Figure S1 ). Other statistics regarding the Per-
turBase datasets are shown in Supplementary Figure S2 . 

Processing of the scPerturbation RNA-seq data 

Assignment of perturbation to a cell 
For the scCRISPR data, we allocated guide RNAs (gRNAs or
sgRNAs, indicating the targeted gene in a cell) to cells based
on two criteria. (i) For cells with sgRNA information already
provided in the original study, we used these results directly.
(ii) For cells where the original study included sgRNA count
matrix data, we allocated sgRNAs using a threshold strat-
egy, specifically considering an sgRNA valid if it had a mini-
mum of five counts. Notably, our current method of setting a
threshold at 5 is somewhat arbitrary, and a mixed distribution
approach (e.g. as provided by 10X Genomics) or similar ap-
proach is warranted ( Supplementary Note S1 ). The cells with-
out sgRNA induction were used as blank controls, and the
cells with nontargeting sgRNA (e.g. green fluorescent protein)
were labeled ‘CTRL’ (negative control). For single-cell chemi-
cal perturbation data, we used the label information provided
in the original study. The blank controls were filtered out for
downstream data analysis. 

Data quality control 
For each scPerturbation dataset, we utilized the anndata and
Scanpy Python packages to process it uniformly into the h5ad
format ( 36 ). (i) Cells with < 200 expressed genes, classified
as blank controls or containing a large fraction of mitochon-
drial genes (over 10%) were filtered. (ii) Genes expressed in
less than three cells were filtered. (iii) Datlinger et al . reported
that at least 30 cells are required to capture each perturbation
phenotype ( 14 ). Therefore, the perturbations, with the excep-
tion of the negative control with < 30 perturbed cells (default),
were not considered in PerturBase. Notably, if no perturba-
tion meets these criteria, the dataset is not subjected to fur-
ther analysis. (iv) PerturBase adopts the global scaling normal-
ization method in Scanpy to scale the expression in each cell
to 10 000, followed by natural logarithmic transformation.
(v) After normalization, PerturBase adopts ‘highly variable
genes’ (HVGs) with the default parameters in Scanpy to iden-
tify highly variable features for the scPerturbation data. To
balance computational efficiency with data information, Per-
turBase maintains 4000 HVGs. If the raw data include < 4000
genes, all the genes are retained; however, focusing solely on
HVGs can filter out perturbation-specific differentially ex-
pressed genes (DEGs), potentially biasing downstream analy-
ses, such as functional analyses ( Supplementary Note S1 ). (vi)
After that, PerturBase performs principal component analysis
(PCA) to reduce data dimensionality ( n _components = 50).
(vii) After dimensionality reduction, PerturBase performs clus-
tering based on the Leiden algorithm with default parame-
ters (resolution = 1). (viii) For user convenience, we employed
clusterProfiler to obtain gene symbols and Entrez and Ensembl
IDs for genes in each dataset, making them readily accessi-
ble to users within their dataset of interest ( 37 ). Among the
98 RNA-seq datasets, 89 met the quality control criteria and
were suitable for downstream data analysis. 

Processing of the scPerturbation A T AC-seq data 

Assignment of perturbation to a cell 
The procedures parallel those of the scPerturbation RNA-seq
in guide RNA assignment. 

https://www.ncbi.nlm.nih.gov/geo/
https://zenodo.org
https://figshare.com
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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A

B

Figure 1. Ov ervie w of the dat a collection and st atistics of PerturBase. ( A ) Dat a collection, constr uction and summary of the Pert urBase resource. ( B ) 
Ov ervie w of the modalities, perturbation types and cell types in PerturBase. The numbers in the top left and top right pie charts represent the numbers 
of datasets, cells and perturbations, respectively. 
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Peak count matrix generation 

scPerturbation A T AC-seq data exist in two primary formats:
the peak count matrix and the 10x fragment TSV file. In the
case of the peak count matrix file, its raw data were preserved.
For the 10x fragment TSV file, we utilized macs2 within the
Signac CallPeaks function to derive the peak count matrix
( 38 ,39 ). The peak count matrix is used for the subsequent
scPerturbation A T AC-seq analysis. 

Data quality control 
For each scPerturbation A T AC-seq dataset, we consistently
processed its peak count matrix into the h5ad format using
the Seurat and Signac R packages. (i) Cells with expressed
peak numbers < 200 or > 30 000 and a fragment ratio in
the peak < 0.15, a blacklist fraction > 0.05, a nucleosome sig-
nal exceeding 4, a transcription start site enrichment below
4 or a blank control were filtered. (ii) Peaks expressed in < 10 

cells were filtered. (iii) Perturbations, with the exception of 
the negative control with perturbed cells < 30 (default), were 
not considered. (iv) The peak count matrix was scaled us- 
ing the term-frequency inverse-document-frequency method 

in Signac. Subsequent procedures aligned with those employed 

for scPerturbation RNA-seq in data quality control from step 

(v). Among the 24 A T AC-seq datasets, 8 met the quality con- 
trol criteria and were suitable for further downstream data 
analysis. 

Processing of the scPerturbation protein data 

In PerturBase, protein modality data are only available for 
download and have not undergone data processing or sub- 
sequent analysis ( Supplementary Note S1 ). This omission is 
due primarily to three factors: (i) The majority of the data 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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n our database consists of RNA-seq and A T AC-seq datasets,
ith only five datasets containing protein data. (ii) Most of

he analytical methods we use are specifically designed for
NA-seq and A T AC-seq data. Consequently, their applicabil-

ty to protein expression profiles is uncertain at this stage. This
pproach reflects our current focus on ensuring comprehen-
ive and reliable analysis of the more prevalent RNA-seq and
 T AC-seq data within our database. As the field of single-cell
rotein analysis continues to develop and more datasets be-
ome available, we plan to incorporate appropriate analytical
ethodologies to expand our capabilities in this area. 

ata denoising of the scPerturbation RNA-seq data 

lternative sources of variation, including batch effects, the
ell cycle stage and the activation of cellular stress responses,
an confound the downstream analysis of scPerturbation data.
o mitigate these issues, we employ Mixscape ( 21 ) from
ertpy ( 36 ) to compute the local perturbation signature for
ach cell. The core concept is to isolate the effect of the ge-
etic perturbation by subtracting the average expression of
he K nearest cells from the negative control pool from each
ell. Consequently, Mixscape extracts the component of the
ell’s profile that solely reflects the genetic perturbation. As
ecommended, we set the number of neighbors K to 20. This
tep was not performed on the scPerturbation A T AC-seq data.

dentification of non-perturbed cells after denoising 

he evaluation of sgRNA knockout efficiency in genetic
creening and off-target effects in chemical screening is cru-
ial ( 9 ,40 ). In genetic screening, sgRNAs direct Cas9 to spe-
ific genomic loci, yet only approximately 70–80% effectively
nduce the desired impact on the targeted gene. This finding
ndicates that in 20–30% of cells harboring an sgRNA, the
arget gene may remain unaffected or partially impacted, re-
ulting in a wild-type phenotype (defined as a non-perturbed
ell). Like genetic screening, chemical screening also results in
ff-target effects ( 9 ). Such occurrences can skew the assess-
ent of a perturbation’s effect. Consequently, a filtering step

o eliminate these cells is necessary. Mixscape leverages the
ell’s transcriptome as a phenotypic indicator of the pertur-
ation’s impact and has devised a method to systematically
dentify and exclude non-perturbed cells. Mixscape’s funda-
ental premise is that each perturbation class comprises a mix
f two Gaussian distributions: one representing successfully
erturbed (SP) cells and the other representing non-perturbed
NP) cells. The transcriptional profile distribution of NP cells
hould align with that of control (CTRL) cells. Mixscape com-
utes the posterior probability of a cell belonging to the SP
lass and categorizes those with a probability over 0.5 as SP
ells. This approach, applied across all perturbations, enables
he identification of all SP cells and assesses the targeting ef-
cacy of genetic and chemical perturbation. Notably, in our
tudy, further analysis was performed. We postulated that the
argeting efficiency of a perturbation would not be < 20%.
ence, if the SP / (NP + SP) ratio for a perturbation < 20%, the
erturbation will not induce a significant phenotypic change
n cells. These perturbations are deemed ‘weak’ perturbations,
nd all corresponding cells are retained for analysis ( 21 ). We
etain cells from ‘weak’ perturbations for several reasons: (i)
otential misclassification: Cells (with ‘weak’ perturbations)
lassified as non-perturbed by Mixscape might actually be
perturbed but exhibit only weak effects that are not read-
ily detectable. In other words, this potential for false nega-
tives arises not from the low target efficiency of the induced
sgRNA but rather from the subtlety of the perturbation ef-
fects. By retaining these cells, we ensure that we do not over-
look weak perturbations that could still be biologically signif-
icant. (ii) Impact on the number of cells: Weak perturbations
often result in a high proportion of non-perturbed cells. Fil-
tering out these cells would significantly reduce the number
of cells available for downstream analysis, thereby diminish-
ing the statistical power and robustness of the analysis. Main-
taining these cells ensures a more comprehensive dataset and
improves the reliability of subsequent analyses. Conversely, if
the SP / (NP + SP) ratio exceeds 20%, the perturbations are
categorized as ‘strong’ perturbations, and the NP cells are fil-
tered out, adhering to Mixscape’s criteria. This step was not
performed on the scPerturbation A T AC-seq data. 

Identification of differentially expressed genes 

associated with a perturbation 

In PerturBase, we employed five methods to detect DEGs by
comparing perturbations against CTRL (control), including
three methods specifically developed for scPerturbation (sc-
MAGeCK, GSFA and SCEPTRE) and two commonly used
methods in scRNA-seq provided by Scanpy (Wilcoxon test
and t test). For the scPerturbation A T AC-seq data, three meth-
ods provided by Seurat were employed [Wilcoxon, t test and
logistic regression (LR)]. Specifically, for scA T AC data, (i) dif-
ferentially accessible peaks (DAPs) between CTRL and per-
turbation are identified and (ii) the gene closest to each of
these peaks is treated as a differentially expressed gene (identi-
fied using the ‘ClosestFeature’ function in Signac). If multiple
peaks map to the same gene, the gene is identified as differ-
entially expressed if at least one of the peaks is differentially
accessible. 

For scMAGeCK, genes with absolute regulatory scores
> 0.2 and P values < 0.05 (adjusted P values are not available)
are defined as DEGs. For GSFA, genes with P values (adjusted
P values are not available) < 0.05 are defined as DEGs. For
SCEPTRE, genes whose absolute log (fold-change) values are
> 1 and whose P values are < 0.05 (adjusted P value is not
available) are defined as DEGs. For the Wilcoxon test and t
test, genes (or peaks) with absolute log(fold change) values > 1
and adjusted P values < 0.05 are defined as DEGs (or DAPs).
The input for the five methods is the normalized expression
profile of HVGs. All the parameters in the above five meth-
ods are set to defaults. For LR, peaks with absolute log(fold
change) values > 1 and adjusted P values < 0.05 are defined as
DAPs. 

Evaluation of the effect of a perturbation 

We evaluated the effect of a perturbation through three dis-
tinct methodologies: (i) An enrichment analysis of the DEGs of
a perturbation is performed. PerturBase performs Gene Ontol-
ogy (GO, version 2.1) ( 41 ) enrichment analysis, including cel-
lular component (CC), biological process and molecular func-
tion, and Kyoto Encyclopedia of Genes and Genomes (KEGG,
release 107.1, 1 August 2023) ( 42 ) enrichment analysis for
each perturbation using its DEGs. All DEGs were treated
collectively, without distinguishing between upregulated and
downregulated genes ( Supplementary Note S1 ). Enrichment

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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analysis was conducted using the enrichGO and enrichKEGG
functions in clusterProfiler (v4.7.1.003), which performs over-
representation analysis. The enrichment terms are defined as
significant if the BH (Benjamini–Hochberg) adjusted P value
is < 0.01 and the Q value is < 0.05. (ii) The enrichment terms
are defined by characterizing the associations between a per-
turbation with MSigDB signatures (hallmark gene sets, ver-
sion 2023.2). We utilized the RRA module of scMAGeCK to
link perturbations with MSigDB signatures ( 43 ). In Pertur-
Base, 50 well-defined hallmark signatures in MSigDB were
downloaded for analysis. A perturbation is considered to sig-
nificantly negatively regulate a phenotype corresponding to
a signature if the ‘FDR.low’ value is < 0.01. Conversely, it is
deemed to significantly positively regulate a phenotype if the
‘FDR.high’ value is < 0.01. (iii) The clustering membership of
a perturbation is evaluated ( 44 ). This analysis consists of two
parts. First, we assess whether a perturbation is preferentially
enriched in a specific cluster compared with the CTRL. Sec-
ond, we evaluate whether its distribution across clusters sig-
nificantly deviates from that of the CTRL. In this evaluation,
we use the chi-square test to assess whether a perturbation sig-
nificantly affects cluster membership (adjusted P value below
0.01) ( 43 ,44 ). 

Characterization of the relationships between 

perturbations 

Perturbations with shared effects or targets tend to produce
similar shifts in expression profiles. Therefore, by character-
izing the relationships between perturbations using expres-
sion profiles, we can describe the differences or similarities
between perturbations in terms of effects or perturbation tar-
gets. In our current study, we characterize the relationships
between perturbations using three methods: (i) A processed
expression profile is used. First, the mean expression profiles
of the perturbations in a dataset were calculated. The relation-
ships between perturbations were subsequently calculated us-
ing cosine similarity. (ii) The E-distance function in pertpy is
used ( 45 ). E-distance is a statistical metric that compares the
mean pairwise distance of cells across two different pertur-
bations to the mean pairwise distance of cells within the two
distributions. A large E-distance of perturbed cells from unper-
turbed cells indicates a strong change in the molecular profile
induced by the perturbation. We compute the E-distance after
PCA ( 24 ). (iii) The latent factors output by the GSFA is used
( 23 ). The GSFA describes the effects of a perturbation through
a set of latent factors that represent biological pathways or
functional units. The relationships between the perturbations
are calculated using cosine similarity with the latent factors
of the perturbations. The GSFA results are not applied to the
scPerturbation A T AC-seq data. 

Database construction 

PerturBase was built on a Linux server. The web services were
built using Nginx (version 1.24.0). The front end of Pertur-
Base was built with HTML5, JavaScript, CSS and React (ver-
sion 18.0.0), which consists of the react UI library ant design
(version 4.20.7). All the data in PerturBase are stored and
managed by MySQL (version 8.0.36). PerturBase has been
tested on a number of popular web browsers, including the
Google Chrome, Firefox and Apple Safari web browsers. No
registration or login is needed. 
Results 

Overview of PerturBase 

PerturBase curates 122 scPerturbation datasets from 46 pub- 
licly available studies, consisting of 115 single-modal datasets 
and 7 multi-modal datasets, covering H . sapiens and M . mus- 
culus . Among these datasets, 101 datasets were perturbed 

with 24 254 genetic compounds, and 21 datasets were per- 
turbed with 230 chemical compounds. PerturBase features 
two modules: the ‘Dataset’ and ‘Perturbation’ modules. The 
‘Dataset’ module facilitates streamlined exploration of all 122 

datasets, offering filters by organism, modality, perturbation 

type, perturbation name and perturbation effect (Figure 2 A).
For example, the ‘Perturbation’ keyword describes the pertur- 
bations a dataset contains, and users can conveniently search 

datasets containing the perturbation of interest. The ‘Path- 
Way2Data’ keyword describes the effects of a perturbation 

and can be used to search datasets containing perturbations 
that have effects of interest (‘Materials and methods’ section).
After selecting a dataset of interest, users can gain insights into 

a range of analysis results, including (i) quality control, (ii) 
denoising, (iii) differential gene expression analysis, (iv) func- 
tional analysis of perturbation effects and (v) characterization 

of relationships between perturbations (Figure 2 B–F). More- 
over, the ‘Perturbation’ module integrates a range of analysis 
results from datasets of a chosen perturbation, including (i) 
quality control, (ii) denoising, (iii) differential gene expression 

analysis and (iv) functional analysis of perturbation effects.
These results provide a comparison of perturbations across 
various cellular contexts, providing valuable insights into their 
effects (Figure 2 B–F). 

Visualization of the quality control results 

The quality control results provide basic information about a 
preprocessed dataset in the ‘Dataset’ module or about a per- 
turbation in the ‘Perturbation’ module, such as the perturba- 
tions the dataset contains and the distribution of cell num- 
bers of a perturbation across experiments (Figure 2 B). The 
‘perturbation in each cell’ describes the number of perturba- 
tions assigned to each cell. This information is useful if users 
want to access data that contain combination perturbations.
We utilized UMAP to visualize the clustering results in the 
‘Dataset’ module. In summary, the quality control results pro- 
vide detailed information about a dataset or a perturbation 

after quality control. 

Visualization of the data denoising results 

Alternative sources of variation, including batch effects, the 
cell cycle stage and the activation of cellular stress responses,
confound downstream analysis. Therefore, PerturBase adopts 
Mixscape ( 21 ) of pertpy to alleviate those confounding fac- 
tors by calculating the local perturbation signature for each 

cell (Figure 2 C, ‘Materials and methods’ section). In addi- 
tion, we utilized UMAP and a heatmap to visualize and com- 
pare the clustering results before and after denoising in the 
‘Dataset’ module. The UMAP and heatmap results are not 
available in the ‘Perturbation’ module because we do not in- 
tegrate the expression profiles of the datasets. After denois- 
ing, we further employed Mixscape to identify non-perturbed 

cells. Non-perturbed cells were defined as cells that experi- 
enced perturbation but did not exhibit the expected pheno- 
type because the perturbation had no effect on the target’s 
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Figure 2. Ov ervie w of the ‘Dataset’ and ‘P erturbation ’ modules. ( A ) The ‘Dataset’ module allows users to analyze specific scPerturbation data of interest 
based on variables such as study title, perturbation, perturbation type and cell line. The ‘P erturbation ’ module allows users to analyze various results of a 
specific perturbation of interest across experiments. ( B ) The quality control section presents basic information about a preprocessed dataset or a 
perturbation across experiments. ( C ) PerturBase adopts Mixscape to alleviate confounding factors. The data denoising section shows the results of 
dimensionality reduction after data denoising and the ratio of non-perturbed cells. ( D ) PerturBase implements five distinct methods for detecting DEGs 
in the scPerturbation RNA-seq data and three methods for A T AC-seq data. This section presents the DEGs of a perturbation under a chosen method. ( E ) 
The functional analysis section employs three methodologies to evaluate the effects of perturbations. ( F ) The relationship section presents the 
relationships between perturbations. 
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transcription / translation ( 21 ). These non-perturbed cells in-
fluence the estimation of the effect of a perturbation. There-
fore, Mixscape was employed to identify non-perturbed cells
and evaluate the efficacy of each perturbation (‘Materials and
methods’ section). In our current study, a further analysis was
performed. We utilized the efficacy information to classify a
perturbation as a ‘weak’ perturbation or a ‘strong’ perturba-
tion ( 21 ). A strong perturbation usually has a strong effect on
the cell phenotype, whereas a weak perturbation has little ef-
fect on the cell phenotype. This information provides insight
into the effect of a particular perturbation, which may aid our
understanding of the roles of a perturbation. All the above in-
formation, including the results output by the Mixscape and
filtered datasets, can be browsed and accessed in PerturBase. 

Visualization of the DEGs associated with a 

perturbation 

In our study, we implemented five distinct methods to detect
DEGs from the scPerturbation RNA-seq data ( 23 , 36 , 46 ) and
three methods for the scPerturbation A T A C-seq data ( 38 , 39 ),
as detailed in the ‘Materials and methods’ section (Figure 2 D).
In the ‘Dataset’ module, we used a bar plot to effectively high-
light the variability in the number of DEGs identified by each
of the five methods. By default, the analysis focuses on the
top 25 perturbations with the most pronounced effects. How-
ever, if users are interested in a particular perturbation, they
can delve deeper into the associated DEGs. This is facilitated
through interactive tables and volcano plots, which become
available once a specific perturbation and a method are se-
lected. In the ‘Perturbation’ module, we used a bar plot to
show the variability in the number of DEGs identified by each
of the five methods across the experiments. Additionally, Per-
turBase incorporates the UpSet R package to illustrate the
overlaps and distinctions in DEG identification across differ-
ent methods for a given perturbation in both modules. This
visualization aids in understanding the consensus and dis-
crepancies in DEG identification among various analytical ap-
proaches and cellular contexts. 

Visualization of the effect of a perturbation 

As detailed in the ‘Materials and methods’ section, to thor-
oughly assess the effect of a perturbation, we employed three
and two methodologies in the ‘Dataset’ and ‘Perturbation’
modules, respectively (Figure 2 E). The outcomes of these anal-
yses are effectively visualized using bar plots and heatmaps.
In the ‘Dataset’ module, our interface prioritizes and displays
only the top 25 perturbations, identified as having the most
significant effects. To visualize the GO and KEGG enrichment
results, we present both individual and aggregated enrichment
analyses for each perturbation. Additionally, PerturBase en-
hances user engagement by allowing the exploration of en-
richment results for DEGs identified through a specific method
tailored to individual perturbations. 

Visualization of the relationships between 

perturbations 

Perturbations sharing similar effects often manifest compa-
rable shifts in gene expression profiles. Consequently, by ex-
amining these expression profiles, we can elucidate the rela-
tionships between perturbations. In our study, we character-
ize their relationships through three distinct methods (Figure
2 F): (i) analyzing the similarity between perturbations based
on processed expression profiles; (ii) employing the E-distance 
function in pertpy to quantify relationships between perturba- 
tions; and (iii) leveraging latent factors derived from GSFA to 

further quantify their relationships. The findings from these 
analyses are concisely presented in a heatmap format, facili- 
tating an intuitive understanding of the relationships between 

various perturbations. These results are not available in the 
‘Perturbation’ module because we do not integrate the expres- 
sion profiles of the datasets. 

Case study 1 

Programmed death-ligand (PD-L1) is frequently observed in 

human cancers and can lead to the suppression of T-cell- 
mediated immune responses ( 47–49 ). To demonstrate the ca- 
pabilities of PerturBase, we utilized the ‘Dataset’ module to 

analyze a scPerturbation dataset from Papalexi et al . to in- 
vestigate the regulatory mechanisms of the expression of PD- 
L1 ( 21 ). This comprehensive analysis highlights the efficacy 
of PerturBase in the analysis of the effects of perturbations.
The dataset encompasses 25 perturbations, with cell counts 
per perturbation ranging from 33 to 1197 post-quality con- 
trol (Figure 3 A). Of these, 11 were categorized as ‘strong’ 
perturbations, whereas the remaining 14 were categorized 

as ‘weak’ perturbations ( Supplementary Figure S3 A). The 
sgRNA efficiencies in the strong perturbations varied from 

∼50–80%, suggesting that some cells, despite receiving an 

sgRNA, did not exhibit the expected phenotype and were 
thus classified as non-perturbed cells (refer to ‘Materials and 

methods’ section for details). For example, as depicted in the 
left panel of Figure 3 B and Supplementary Figure S3 B, the 
identified non-perturbed cells expressing IFNGR1 presented 

a wild-type phenotype, and the IFNGR1 target gene PD-L1 

was not affected. After filtering out non-perturbed cells, two 

clear groups of cells were observed, including a cluster con- 
sisting of knockouts in IFNGR1, IFNGR2, JAK2 and ST A T1 

and a second cluster consisting of the knockout IRF1 (Figure 
3 C), underscoring the necessity and effectiveness of the filter- 
ing strategy employed by PerturBase. 

As shown in Supplementary Figure S3 C, IFNGR1,
IFNGR2, JAK2 and ST A T1 were highly similar, which is con- 
cordant with prior findings ( 50 ,51 ). Additionally, perturba- 
tions, such as those in ST A T3, CD86 and ATF2, were highly 
similar to those in the CTRL group, suggesting minimal phe- 
notypic impact on the cells. This observation is consistent with 

their previous classification as ‘weak’ perturbations. Further 
investigation into the mechanisms driving PD-L1 downregu- 
lation revealed that these four perturbations are central to the 
immune response pathway, particularly in the context of in- 
terferon (IFN)- γ signaling (Figure 3 D and E). When IFN- γ
binds to its receptor, which consists of IFNGR1 and IFNGR2,
it activates JAK2, which in turn phosphorylates ST A T1. Phos- 
phorylated ST A T1 dimerizes and translocates to the nucleus,
where it binds to DNA and promotes the transcription of 
genes involved in the immune response, including those reg- 
ulating PD-L1 expression ( 47 ). However, the disruption of 
IFNGR1, IFNGR2, JAK2 or ST A T1 can inhibit this signaling 
pathway, leading to decreased PD-L1 expression. This reduc- 
tion in PD-L1 can enhance the ability of the immune system 

to target and destroy cancer cells, as PD-L1 normally acts to 

suppress immune responses. Moreover, gene enrichment anal- 
ysis of IFNGR1, IFNGR2, JAK2 and ST A T1 revealed their 
involvement in pathways related to MHC protein complex 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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Figure 3. Case study 1 demonstrates the capabilities of the PerturBase ‘Dataset’ module. ( A ) Detailed information of the case study 1 dataset as 
pro vided b y PerturB ase. ( B ) Expression heatmap of IFNGR1-o v ere xpressing and control cells. T he heatmap w as generated using Mixscape with def ault 
parameters. ( C ) UMAP plot produced by PerturBase ‘Data dimensionality reduction visualization after denoising’ panel. ( D ) GO enrichment results for 
BRD4, IFNGR1, IFNGR2, IRF1, IRF7, JAK2, SMAD4 and ST A T1. ( E ) Associations between the selected perturbations and MSigDB hallmark signatures. 
Only associations with an adjusted P value < 0.01 are shown. Perturbations without significant associations are excluded. 
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inding and immune receptor activity, further underscoring
heir pivotal roles in immune regulation (Figure 3 D). In con-
lusion, these insights underscore the comprehensive nature
f PerturBase as a scPerturbation database. It stands out as an
ndispensable resource for researchers seeking to access and
nalyze perturbation data, providing a robust platform for the
xploration of perturbation effects. 

ase study 2 

o further demonstrate the functionality and value of Pertur-
ase, we utilized the ‘Perturbation’ module to integrate chem-
ical scPerturbation datasets across multiple cell lines to ex-
plore the dose–response relationship and its heterogeneity. In
this context, we utilized the data generated by Srivatsan et
al . ( 9 ) who assessed the impact of 188 compounds on A549,
K562 and MCF7 cell lines at four different concentrations
(0.01, 0.1, 1 and 10 μM). 

Typically, there is a proportional relationship between
chemical dose and concentration (known as the dose–effect
relationship), meaning that the higher the dose of a com-
pound is, the greater its impact on cell lines ( 52 ). In the
A549, K562 and MCF7 cell lines, as the concentration in-
creased from 0.01 to 10 μM, the number of DEGs also in-
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Figure 4. Case study 2 demonstrates the capabilities of the PerturBase ‘Perturbation’ module. ( A ) Numbers of differentially expressed genes associated 
with compounds at various doses. Boxes show the 25th–75th percentiles, with a line at the median. Whiskers extend to minimum and maximum values 
within 1.5 times the interquartile range. ( B ) Distances between the compounds and the control group at various doses. Boxes show the 25th–75th 
percentiles, with a line at the median. Whiskers extend to minimum and maximum values within 1.5 times the interquartile range. ( C ) Proportions of 
compounds categorized as strong perturbations under various doses. ( D ) Intersections of genes differentially expressed in response to quisinostat under 
various conditions. The y -axis represents various conditions. For example, A549_0.1 μM indicates A549 cells treated with 0.1 μM quisinostat. Only 
intersections with a size larger than 10 are shown. ( E ) The most enriched GO terms for quisinostat under various conditions. The x -axis represents 
various conditions. For example, A549_0.1 μM indicates A549 cells treated with 0.1 μM quisinostat. ( F ) Intersections of DEGs for patupilone under 
various conditions. The y -axis represents various conditions. For example, A549_0.1 μM indicates A549 cells treated with 0.1 μM of patupilone. Only 
intersections with a size larger than 10 are shown. ( G ) The most enriched GO terms for patupilone under various conditions. The x -axis represents 
various conditions. For example, A549_0.1 μM indicates A549 cells treated with 0.1 μM patupilone. 
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creased, and the distance (calculated by the E-distance func-
tion) from the control group (non-perturbed) increased (Fig-
ure 4 A and B). We obtained similar conclusions with the
Wilcoxon, SCEPTRE, scMAGeCK and GSFA DEG detection
methods. Additionally, the percentage of compounds catego-
rized as strong perturbations also tended to increase as the
concentration increased from 0.01 to 10 μM (Figure 4 C).
However, the dose–effect relationships across compounds
also differed. For example, compared with other compounds,
quisinostat (named quisinostat-JNJ-26481585-2HCl in Per-
turBase), a histone deacetylase inhibitor (HDACi), reached its
maximal effect at a low concentration of 0.01 μM, indicat-
ing that its effect was already saturated. As shown in Figure 
4 D, the number of DEGs for quisinostat remained relatively 
constant across low and high concentrations in the three can- 
cer cell lines. Moreover, GO and KEGG functional enrichment 
analyses, along with MsigDB functional analysis, revealed that 
quisinostat had similar functions, such as increasing cell apop- 
tosis at both low and high concentrations ( 53 ) (Figure 4 E and 

Supplementary Figure S4 A). Furthermore, the dose–effect re- 
lationship of a specific compound can vary drastically across 
cell lines. Patupilone, a microtubule function inhibitor, was 
classified as a weak perturbation in the K562 cell line, in- 
dicating minimal impact. In contrast, in the MCF7 cell line,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae858#supplementary-data
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atupilone only showed significant efficacy at high concentra-
ions, where DEGs became apparent (Figure 4 F). Interestingly,
n the A549 cell line, patupilone had a unique dose–response
elationship, where it exerted a significant effect at low con-
entrations but lost its efficacy at relatively high concentra-
ions (Figure 4 F and Supplementary Figure S4 B). These intri-
ate mechanisms underscore the importance of understanding
ose-dependent variations in drug efficacy, particularly in di-
erse cellular contexts such as those provided by PerturBase. 

In summary, these analyses underscore the value of Per-
urBase in providing comprehensive insights into drug re-
ponses. By facilitating the integration and analysis of scPer-
urbation data across various cell lines and conditions, Pertur-
ase proves to be a valuable resource for researchers studying

he dynamics of drug efficacy and cellular responses. 

onclusions and future development 

erturBase provides two major modules, namely ‘Dataset’ and
Perturbation’, for the exploration of high-content scPerturba-
ion data. The ‘Dataset’ module provides easy exploration and
ccession of all 122 perturbed datasets with 12 keywords. The
Perturbation’ module integrates a range of analysis results
cross datasets that share the same perturbation. To enhance
he interpretability of high-content perturbation resources,
erturBase offers five categories of analysis and visualization,

ncluding quality control, denoising, identification of DEGs,
unctional analysis of perturbation effects and characteriza-
ion of relationships between perturbations. However, the
ata processing and analysis methods in PerturBase may have
otential limitations and biases. First, preprocessing choices,
uch as normalization techniques and non-perturbed cell iden-
ification, can introduce variability and affect downstream
nalyses. Second, PerturBase’s focus on HVGs can result in the
xclusion of perturbation-specific DEGs, potentially introduc-
ng bias in downstream analyses, such as functional analyses
 Supplementary Note S1 ). Additionally, the presence of con-
ounding variables, such as the cell cycle stage or batch effect,
an impact the interpretation of perturbation effects. Despite
ur efforts to mitigate these factors through rigorous qual-
ty control and standardized preprocessing, it is essential to
onsider these limitations when interpreting the results. Fu-
ure work will focus on refining these methods and incorpo-
ating advanced techniques, such as Mixscale ( 54 ), to further
ncrease the robustness and accuracy of our analyses. 

Moving forward, we aim to enhance PerturBase in sev-
ral key areas. First, we are committed to the continual cu-
ation of datasets, expanding our repository with the lat-
st high-content perturbation studies, particularly those fo-
used on protein, chemical and multi-modal experiments
 Supplementary Notes S2 and S3). Second, although Pertur-
ase offers five distinct types of analysis results, we acknowl-
dge the need for more interactive visualizations to enhance
he interpretability of each result. To address this, we are
edicated to developing a more user-friendly and interactive
latform in our forthcoming version, facilitating easier access
o comprehensive information. Finally, we plan to incorpo-
ate additional modules to deepen the understanding of the
cPerturbation datasets ( Supplementary Note S2 ). In essence,
erturBase stands as the pioneering high-content screening
atabase that has been specifically designed for the efficient
earch, visualization and analysis of scPerturbation datasets.
e believe that PerturBase will become an indispensable re-
source in the field, offering an extensive range of data and
functionalities. 

Supplementary data 

Supplementary Data are available at NAR Online. 

Data availability 

PerturBase is an open resource for interactively visualization
and analysis of the comprehensive scPerturbation data re-
source ( http:// www.perturbase.cn/ ). PerturBase is freely ac-
cessible, without any registration requirements. To enhance
transparency and reproducibility, we have uploaded demo
data to https:// figshare.com/ s/ dddc4ddf91d0b100fd6c and
code to https:// github.com/ bm2-lab/ PerturBase and https://
doi.org/ 10.5281/ zenodo.13761517 . 
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