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Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration
of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is
both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have
experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome,
proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information
such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field,
offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent
advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in
selecting appropriate methods for single-cell sequencing and related data analysis.

single-cell sequencing | genome | epigenome | proteomics | metabolomics | multimodal | spatial transcriptomics | CRISPR
screening

CONTENTS
Introduction 6
Chapter 1 Single-cell transcriptome sequencing 6

Overview of scRNA-seq 6
Currently available scRNA-seq technologies 9
Single-nuclei RNA-sequencing 15
Computational methods for scRNA-seq data 15
Applications of scRNA-seq 24

Summary 28
Chapter 2 Single-cell whole-genome sequencing 28

ScWGA methods 29
High-throughput scWGS methods 32
Applications of scWGS in biomedicine 33
Summary 35

Chapter 3 Single-cell epigenome sequencing 35
Techniques for sequencing the single-cell epigenome 35
Computational methods for single-cell epigenome data 37

SCIENCE CHINA Life Sciences Vol.68 No.1, 5–102 January 2025 © Science China Press 2024

Citation: Sun, F., Li, H., Sun, D., Fu, S., Gu, L., Shao, X., Wang, Q., Dong, X., Duan, B., Xing, F., et al. (2025). Single-cell omics: experimental workflow, data analyses and
applications. Sci China Life Sci 68, 5–102. https://doi.org/10.1007/s11427-023-2561-0

http://life.scichina.com
http://link.springer.com
https://doi.org/10.1007/s11427-023-2561-0
https://doi.org/10.1007/s11427-023-2561-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s11427-023-2561-0&domain=pdf&date_stamp=2024-06-12
https://doi.org/10.1007/s11427-023-2561-0


Applications of single-cell epigenomes 41
Summary 42

Chapter 4 Single-cell proteomics technology based on mass
spectrometry 43
MS-based SCP workflow 43
State-of-the-art SCP tools 45
Applications 48
Discussion and prospects 49
Summary 50

Chapter 5 Single-cell metabolomics technology 50
Research techniques in single-cell metabolomics 51
State-of-the-art technologies and methods in single-cell
metabolomics field based on mass spectrometry 51
Sampling techniques in single-cell metabolomics based on
Mass spectrometry 51
Data analysis in single-cell metabolomics based on Mass
spectrometry 56
Applications 56
Summary 56

Chapter 6 Single-cell multimodal sequencing technology 57
Single-cell multimodal sequencing technology 57
Multi-omics integration analysis 59
Summary 61

Chapter 7 Single-cell spatial transcriptomics technology 61
Techniques for spatially resolved transcriptomics 61
Computational methods for spatial transcriptomics 65
Applications 74
Summary 76

Chapter 8 Single-cell CRISPR screening technology 76
The category of scCRISPR-seq platforms 76
The tools to analyze scCRISPR-seq data 79
Applications of scCRISPR-seq 79
Summary 80

Epilogue 80

Introduction

The exploration of individual cells enhances our understanding
of cellular diversity, disease processes, and the organization of
multicellular organisms. Technologies for measuring biological
systems at the single-cell level have made exciting advances and
are now at the forefront of research. Single-cell RNA sequencing
(scRNA-seq) technique allows the dissection of gene expression at
single-cell resolution, revolutionizing transcriptomic studies.
Since its initial discovery in 2009, more than 60 scRNA-seq
protocols have been developed so far (Table S1 in Supporting
Information). The maturation of scRNA-seq provides researchers
with unique opportunities to catalog human cell types, under-
stand their development, variation between individuals, and
unravel their involvement in disease. With the rapid develop-
ment of single-cell sequencing technology and reduction of cost,
this has been widely used to solve critical biomedical problems.

The rapid development of scRNA-seq technology has facilitated
the exploration of other omics, including genomics, epigenome,
proteomics, and metabolomics. Novel technologies, such as
multi-omics technology, spatial scRNA-seq, and CRISPR screen-
ing, have also emerged to gain a comprehensive understanding
of complex cellular behavior through multi-omics data integra-
tion and the incorporation of additional information. Figure 1
illustrates the expanded landscape of single-cell sequencing
technologies.

This paper will review the latest developments of single-cell
omics technologies from the following eight aspects: (i) Single-cell
transcriptome sequencing; (ii) Single-cell whole-genome sequen-
cing; (iii) Single-cell epigenome sequencing; (iv) Single-cell

proteomics technology; (v) Single-cell metabolomics technology;
(vi) Single-cell multimodal sequencing technology; (vii) Single-
cell spatial transcriptomics technology; (viii) Single-cell CRISPR
screening technology. The aims are to systematically summarize
and discuss in detail currently available single-cell omics
technologies, the computational approaches to decipher the
single-cell dataset, and their advantages, disadvantages, and
applications.

Chapter 1 Single-cell transcriptome sequencing

The advent of single-cell RNA sequencing (scRNA-seq) technol-
ogy is a state-of-the-art technique for analyzing cellular complex-
ity and heterogeneity, providing a wealth of information across
diverse scientific domains. The high resolution of this technology
makes it possible to discuss novel biological issues by offering a
unique opportunity to explore the transcriptional landscape of
single cells. This cutting-edge method, since the first scRNA-seq
protocol was introduced in 2009, has seen substantial advance-
ments in method development (Figure 2). These approaches
incorporate essential improvements and modifications in single-
cell isolation, capture, reverse transcription, cDNA amplification,
library preparation, sequencing, and data analysis to enhance
throughput and automation while decreasing time and costs.
This chapter presents a comprehensive overview of single-cell
transcriptome sequencing technologies, bioinformatics analysis
methods, and their uses in medical and biological sciences
research to help researchers make informed choices.

Overview of scRNA-seq

ScRNA-seq, the pioneered single-cell sequencing technology, has
witnessed wide popularity and encompasses a variety of
approaches. Despite the diversity in methods, they all follow a
similar general process involving four primary steps: (i) isolation
of single cells, (ii) reverse transcription (RT), (iii) cDNA
amplification, and (iv) sequencing library construction and
sequencing (Hedlund and Deng, 2018). Major steps of the
scRNA-seq workflow are shown in Figure 3. This section outlines
some techniques and solutions related to single-cell isolation and
sequencing library construction.

(1) Single-cell isolation
In scRNA-seq, the first and critical step is single-cell isolation,

in which tissue dissociation and single-cell separation are
considered significant contributors to contamination, batch
effects, and procedural disparities (Tung et al., 2017). Thus, to
perform high-throughput and unbiased single-cell sequencing, a
reliable and accurate capturing of single cells with high efficiency
is the key determinant. Early methods for single-cell isolation
including limited serial dilution (Gross et al., 2015), manual
micromanipulation (Hu et al., 2016a), and laser capture
microdissection (LCM) (Emmert-Buck et al., 1996) were low-
throughput, time-consuming, inefficient, and technically chal-
lenging but are still used to analyze low number of cells (e.g., rare
cells) (Dal Molin and Di Camillo, 2019).

Fluorescence-activated cell sorting (FACS), a commonly used
high-throughput technique, offers specific and automated isola-
tion of thousands of individual cells but requires a large input
volume (numbers of cells for isolation >10,000) (Hu et al.,
2016a). Moreover, this technique is inadequate for certain cells
exhibiting low marker expression due to the faint or weak
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fluorescence signal, making it challenging to differentiate
subpopulations with similar marker expression (Yasen et al.,
2020). Magnetic-activated cell sorting (MACS) is another high-
throughput isolation technique designed to separate various cell
types based on enzymes, lectins, antibodies, or streptavidin
conjugated to magnetic beads, facilitating the binding of specific
proteins on the target cells (Hu et al., 2016a). The MACS system
boasts a notable advantage, achieving >90% purity for specific
cell populations (Miltenyi et al., 1990). However, MACS has
inherent limitations compared with FACS due to immunomag-
netic techniques that can only isolate cells into negative and
positive populations. Moreover, it cannot isolate cells based on
low or high expression of a molecule, a capability present in FACS
(Hu et al., 2016a). In the current landscape of high-throughput
sequencing platforms, methods involving microfluidic-based
single-cell manipulation have emerged as the leading technique
for single-cell separation in transcriptome studies and have
significantly enhanced the scale, efficiency, and accuracy of the
isolation process. Microfluidics devices, in which reaction
chambers or droplets are used to capture the cells followed by
individual steps nanoliter reactions, offer a cost-effective and
sample-efficient analysis. These devices are primarily categorized
into microwell-based methods, droplet-based methods, and
integrated fluidic circuits (IFCs). The integration of microfluidics
systems in scRNA-seq has significantly enhanced sequencing
throughput, enabling the simultaneous processing and analysis
of tens of thousands of single cells. A comprehensive overview of
current single-cell isolation technologies, including their advan-
tages and limitations, is presented in Table S2 in Supporting
Information.

(2) Reverse transcription and cDNA amplification
A single mammalian cell contains approximately 10 pico-

grams aggregate quantity of RNA, with a predominant portion
composed of ribosomal RNAs (rRNAs) and transfer RNAs
(tRNAs), whereas messenger RNAs (mRNAs) constitute only
1%–5% of the total (Liu et al., 2014; Wang et al., 2023c). Since
mRNA is present in extremely low amounts in a single cell, it is
essential to amplify cDNA after the RT process to obtain
significant quantities for sequencing library preparation. cDNA
amplification can be achieved through either exponential
amplification using polymerase chain reaction (PCR) or linear
amplification based on in vitro transcription (IVT).

Presently, the predominant method for library construction
involves PCR-based cDNA amplification, including poly(A)
tailing and template switching (TS) methods (Kolodziejczyk et
al., 2015). The poly(A) tailing method employs an oligo-dT
primer that binds the mRNA 3′-poly(A) tail to reverse transcribe
mRNA into cDNA. The poly(A) tailing method is speedy but
cannot capture nonpolyadenylated (Poly(A)−) RNA (Heben-
streit, 2012), and the capture efficiency is low, which is reported
to be around 10%–15% for current protocols (Islam et al., 2014).
Additionally, the termination of the reverse transcriptase
reaction may lead to diminished coverage rate of the 5′ end of
mRNA in transcription. The TS technique involves the utilization
of Moloney murine leukemia virus (MMLV) reverse transcriptase
for the TS process. MMLV reverse transcriptase can append a poly
(C) tail to the trailing end of the newly synthesized single strand.
The poly(C) tail can bind to the 5′-end poly(G) tail of template
switching oligonucleotide (TSO) adapter sequences. Following
this interaction, a “switch” takes place: the reverse transcriptase
utilizes the TSO as a template to synthesize cDNA, to complete the
adaptor conversion (Picelli, 2017). The TS method exhibits a
reduced susceptibility to nucleic acid loss, but it comes with a
lower sensitivity compared with the poly(A) tailing method. PCR-

Figure 1. Schematic diagram of single-cell sequencing technologies. Since the inception of the first scRNA-seq in 2009, single-cell sequencing technology has been rapidly
expanded to other omics levels and diverse integration approaches. Single omics-level sequencing technologies now include transcriptome, genome, epigenome, proteome and
metabolome. Integrated sequencing technologies involve multiple omics data integration, such as transcriptome & genome, transcriptome & epigenome, transcriptome &
proteome, transcriptome & DNA-protein interactome. Additionally, these integrated approaches incorporate sequencing data with other layers of information, including spatial
data and the CRISPR screening technique. Each type of expansion is represented by the technology listed in the corresponding color box.
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based amplification, while capable of rapidly and efficiently
amplifying substantial quantities of cDNAs in a short timeframe,
is constrained by the inherent characteristics of the exponential
amplification process. PCR tends to favor the amplification of
shorter and less G-C-rich amplicons, resulting in quantification
bias and the accumulation of non-specific transcripts, leading to
the loss of original transcript information (Aird et al., 2011).
Additionally, PCR can cause the over-presence of highly
expressed transcripts in the final library (Aird et al., 2011).

IVT represents another method for cDNA synthesis and
amplification. The key strength of IVT is its linear amplification,
a feature that mitigates what is commonly known as amplifica-
tion bias, rendering it considered more precise and reproducible
in comparison to PCR (Chen et al., 2017a; Grün and van
Oudenaarden, 2015). In this strategy, an oligo-dT primer,
encompassing (i) a unique molecular identifier (UMI, featuring
random nucleotide sequences that label individual mRNA
molecules and are employed for quantifying unique transcripts

Figure 2. Significant works in the field of scRNA-seq over the past 10 years. Black represents scRNA-seq technologies; red represents snRNA-seq technologies.

Figure 3. Major steps of scRNA-seq workflow.
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and correcting amplification biases); (ii) a unique cell barcode;
(iii) an Illumina adapter; and (iv) a T7 promoter, initially binds to
the 3′-poly(A) tail of mRNA to synthesize both strands of cDNA.
Subsequently, the cDNA fragments, each uniquely barcoded, are
combined, and the T7 polymerase identifies the T7 promoter
sequence, initiating IVT to generate additional RNA molecules.
Another round of RT is required to reconvert the amplified RNA
molecules into cDNAs for sequencing library construction.
Consequently, the resultant cDNAs exhibit a pronounced bias
in coverage toward the 3′ end. Moreover, this approach is
characterized by its time-intensive and labor-intensive nature,
contributing to its less widespread use compared with PCR
(Hashimshony et al., 2012).

As a unique step of scRNA-seq, all transcripts originating from
a single cell obtain a unique barcode-a brief oligonucleotide
sequence introduced into the cDNA during RT to distinguish the
transcriptome of individual cells. Leveraging the unique barcode
information, these transcripts can be readily attributed to their
respective cells. Consequently, a multitude of single-cell tran-
scriptomes, each uniquely labeled with cell barcodes, are
amalgamated for the library construction and subsequent
sequencing in a single run. This approach significantly
diminishes costs and augments sequencing throughput. The cell
barcode serves as a highly effective strategy for enabling parallel
processing and was initially used in the STRT-seq method in
2011 (Islam et al., 2011). Subsequently, in 2014, Islam et al.
(2014) further innovated by introducing a UMI to identify each
cDNA molecule within a cell. Like cell barcodes, a UMI is likewise
a 6–8 base pair random oligonucleotide sequence that can be
integrated into each transcript within a cell during RT. With a
substantial pool of UMIs, each transcript is tagged with a distinct
barcode, thereby ensuring that all duplicated molecules produced
through PCR amplification retain the original transcript’s UMIs.
By counting the unique barcodes, the number of original copies
of the transcript can be accurately quantified, thereby eliminat-
ing the bias of PCR amplification.

Regarding the three pivotal issues in single-cell RNA sequen-
cing: (i) isolating individual cells; (ii) minimizing RNA loss during
RT; and (iii) producing enough DNA for sequencing, researchers
have undertaken explorations into technological advancements
in recent years. This has led to the proposal of various scRNA-seq
methodologies tailored for the comprehensive study of single-cell
transcriptomics.

The different scRNA-seq technologies are rooted in shared
fundamental principles, yet they vary in at least one of the
following aspects: (i) single-cell isolation; (ii) RT; (iii) amplifica-
tion of cDNA; (iv) transcript coverage; (v) UMI; (vi) strand-
specificity. Each approach has its unique strengths and limita-
tions. The key features of these diverse scRNA-seq technologies
are consolidated in Table S1 in Supporting Information.
Consequently, researchers have the flexibility to choose a suitable
scRNA-seq method based on technical characteristics, advan-
tages, cost factors, and throughput demands.

Currently available scRNA-seq technologies

Low-throughput scRNA-seq technologies
Over 60 distinct approaches have been developed for scRNA-seq,
as detailed in Table S1 in Supporting Information. In general,
these approaches can be categorized into two main types: low-
throughput and high-throughput methods. The fundamental

chemistry developed in low-throughput approaches is geared
towards enhancing sequencing sensitivity and accuracy, while
reducing costs and technical noise. Particularly, sensitivity
stands out as the foremost critical feature, serving as a
fundamental indicator of method performance. High-throughput
methods have evolved from the essential chemistries of several
classic low-throughput approaches. We will discuss these
technologies in detail below.

(1) Tang’s protocol
Tang’s protocol, developed by the Surani group in 2009,

stands as the pioneering scRNA-seq method. In this technique, a
microscope is used to manually select a single mouse blastomere.
Following that, the cells are lysed, and the mRNAs are converted
into cDNAs through RT using a poly(T) primer featuring an
anchor sequence (UP1). A poly(A) tail is then added to the
trailing end of the first strand end with the help of terminal
transferase. Following this, the second strand cDNAs are
synthesized using the second poly(T) primer featuring another
anchor sequence (UP2). The cDNAs are then efficiently amplified
through PCR using UP1 and UP2 primers, and libraries are
constructed for sequencing on the SOLiD system. This method
can generate nearly full-length cDNA of transcripts and detect
~13,000 genes (Tang et al., 2009). This technology mainly helps
in the unveiling of new transcripts and alternative splicing
isoforms.

Despite representing a significant advancement for the
emerging field of scRNA-seq at the time, this approach has
considerable limitations. First, the approach can only identify
mRNA that has a poly(A) tail; it cannot capture mRNAs without
poly(A) tails, such as histone mRNAs, miRNA, circular RNA
(circRNA), and nascent RNA. This is because the method
depends on poly(T) primers for the capturing of mRNA via the
poly(A) tail for initiating RT reactions. Second, inefficiencies in
the enzymatic reactions contribute to a reduction in sequencing
sensitivity, resulting in the loss of low-expression transcripts. Third,
this method is not strand-specific and cannot distinguish between
sense and antisense transcripts. Thus, it is not commonly used.

(2) STRT-seq
In 2011, Islam et al. (2011) developed a single-cell tagged

reverse transcription sequencing (STRT-seq) method, a highly
multiplexed approach for scRNA-seq on the Illumina platform.
This method introduced a barcode and an upstream primer-
binding sequence through the template-switching mechanism
during RT, facilitating strand-specific amplification of 3′ ends
and high throughput 96-cell multiplexing. Using an array-
based strategy, STRT-seq supports the processing of up to 800
individual cells. A key advantage of this method is that it can
add a unique barcode sequence to each cell during the RT
process, thereby enabling large-scale detection of various
mixed cell samples, such as highly heterogeneous tumor cell
samples. Compared with Tang’s method, STRT-seq signifi-
cantly reduces costs and processing time through its early
barcoding strategy. However, it employs multiple cycles of
PCR, potentially introducing PCR bias. This method has many
applications in the biomedical field, including the character-
ization of tumor heterogeneity and the identification of
potential novel biomarkers or drug targets for disease diagnosis
and treatment (Cui et al., 2021; Song et al., 2022a; Tian et al.,
2022).

(3) Smart-seq
In 2012, Ramsköld et al. (2012) developed Smart-seq, a

https://doi.org/10.1007/s11427-023-2561-0 SCIENCE CHINA Life Sciences Vol.68 No.1, 5–102 January 2025 9

https://doi.org/10.1007/s11427-023-2561-0


reliable and consistent approach for scRNA-seq, a switching
mechanism at the leading end of the transcript, which
demonstrated significant improvement, surpassing 40% effi-
ciency in full-length cDNA synthesis for transcripts. The
publication of the technology is a landmark in the field of
scRNA-seq studies. The core principle of Smart-seq involves
utilizing poly(T) primers and SMART-TS technology to convert
polyadenylated (poly(A)+) RNA into full-length cDNA. The
resultant cDNA molecules, after the amplification using PCR,
are then used to create Illumina sequencing libraries by the
Nextera Tn5 transposome technique. This method considerably
improves the ability to detect alternatively spliced exons and low-
abundance expressed transcripts. Smart-seq method has been
widely used in medicine, such as analyzing gene expression
profiles of CD177+ cells in the liver of a mouse model with biliary
atresia (Zhang et al., 2022d); to analyze the genome-wide
expression of skeletal muscle stem, niche cells, and single
myofibers (Blackburn et al., 2019; Blackburn et al., 2021); and
investigating differences in dermal CD4+ Trm cells between
patients with acute cutaneous lupus erythematosus and normal
controls (Zhao et al., 2022c).

Smart-seq2 was developed to overcome the limitations of
coverage, less productivity, and sensitivity issues observed in
Smart-seq (Picelli et al., 2013). In order to increase cDNA library
yield and length, several improvements were implemented in
Smart-seq2 including enhancement of reverse RT, TSOs, and the
reamplification of PCR. A notable enhancement in cDNA yield,
approximately twofold, was achieved by incorporating a locked
nucleic acid (LNA) guanylate at the 3′ end of TSO as opposed to
Smart-seq. This improvement can be attributed to the heightened
thermal stability of LNA-DNA base pairs. Moreover, the addition
of the methyl group donor betaine, along with a higher
concentration of MgCl2, also led to a substantial increase in
cDNA yield. Commencing the addition of deoxyribonucleoside
triphosphates (dNTPs) before RNA denaturation, as opposed to
incorporating them in the RT master mix, enhanced the average
length of the preamplified cDNA. This improvement is likely
attributed to increased stability in the hybridization of RNA to the
oligo-dT primer. The use of KAPA HiFi Hot Start DNA polymerase
improved cDNA generation and achieved greater cDNA length.
Smart-seq2 transcriptome libraries outperform Smart-seq in
terms of detection strength, coverage rate, bias, and accuracy.
Smart-seq2 transcriptome libraries can be generated with off-the-
shelf reagents even at a lower cost, allowing the in-depth analysis
of entire exons of each transcript and also detecting different
splice variants. This method also facilitates thorough analysis of
single nucleotide polymorphisms (SNPs) and mutations. How-
ever, it has limitations, such as the lack of strand specificity and
the incapability to detect poly(A)− RNAs (Picelli et al., 2014).
Additionally, the cell isolation process using micropipettes is
time-consuming and low-throughput.

Smart-seq3 represents an enhancement in sensitivity achieved
through the optimization of RT and TS conditions (Hagemann-
Jensen et al., 2020). The optimal parameters include the
utilization of Maxima H-minus reverse transcriptase, transition-
ing the RT salt from KCl to NaCl or CsCl, performing RT in the
presence of 5% polyethylene glycol (PEG), and incorporating
GTPs or dCTPs to enhance and stabilize the TS reaction. A
distinctive feature of Smart-seq3 is its integration of full-length
transcriptome coverage with a 5′ UMI RNA counting strategy,
which elevates the precision of transcript counting without

sacrificing overall coverage. In this approach, a TSO primer is
constructed, comprising a partial Tn5 motif, an 11 base pair tag
sequence, an 8 base pair UMI sequence, and three riboguano-
sines. Following sequencing, the 11 base pair tag is utilized to
unequivocally differentiate 5′ UMI-labeled reads from internal
reads. Within a single sequencing reaction of Smart-seq3, both 5′
UMI-labeled reads and internal reads that span the entire
transcript without UMIs are collected. This approach allows for
the accurate quantification of the original transcripts using UMI
reads, correcting for the nonlinear PCR amplification bias. The
reconstruction of full-length transcripts is achieved through the
use of internal reads. Many current sequencing library construc-
tion methods incorporate cell barcodes and UMI tag strategies.
However, as these can only be introduced at the ends of the
cDNA, the resulting sequenced cDNA sequences are limited to
one end of the transcript, leading to the loss of significant
sequence information in the middle of the transcript. Conse-
quently, tag-based methods are primarily employed for gene
expression quantification and are unsuitable for isoform identi-
fication or splicing. Despite their ability to capture full-length
transcripts, Smart-seq and Smart-seq2 are unable to utilize
barcodes or UMIs to tag transcripts, making them incompatible
with high-throughput, parallel single-cell sequencing. Addition-
ally, without a UMI tag, these methods cannot address the
amplification bias introduced by PCR. However, Smart-seq3
overcomes the limitation of incompatibility between full-length
transcript coverage and UMI by utilizing a special TSO primer.

Smart-seq-total was designed to address the limitation of
capturing only poly(A)+ RNA molecules in the previous Smart-
seq technologies (Isakova et al., 2021). The primary advance-
ment in this approach lies in the utilization of Escherichia coli
poly(A) polymerase to add adenine tails to the 3′ end of RNA
molecules. Consequently, all poly(A)+ RNAs are reverse-tran-
scribed using a poly(T) primer that incorporates a UMI, along
with the TSO. This modification enables Smart-seq-total to
capture diverse RNA forms concurrently, encompassing protein-
coding, long-noncoding, microRNA, and other noncoding RNA
transcripts within a single cell. Such an approach facilitates the
exploration of regulatory connections between coding and
noncoding transcripts in a cell, offering insights into the intricate
regulatory landscape. However, it is important to note that
Smart-seq-total does have some limitations. Firstly, it cannot
assess circRNA. Secondly, it results in the loss of the endogenous
polyadenylation status of transcripts. Despite these drawbacks,
Smart-seq-total exhibits significant potential for uncovering
noncoding regulatory patterns governing cellular functions and
contributing to the definition of cellular identity.

(4) CEL-seq
Cell expression by linear amplification and sequencing (CEL-

seq) was the pioneering method to utilize linear strand-specific in
IVT for RNA amplification from single cells (Hashimshony et al.,
2012). Initiation of the procedure includes the synthesis of the
first-strand cDNA using a primer featuring an anchored poly(T),
a specific barcode, the 5′ Illumina sequencing adaptor, and a T7
promoter. Subsequently, the second strand is generated to
produce double-stranded cDNA containing a T7 promoter.
Combined cDNA samples from several cells undergo IVT,
initiated by the T7 promoter, enabling linear amplification of
cDNA. The resulting amplified RNAs are then converted into
cDNAs for sequencing. By employing linear amplification, CEL-
seq minimizes amplification bias, delivering a more sensitive and
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reproducible outcome compared with full-length cDNA coverage
techniques like Smart-seq. However, CEL-seq has limitations,
such as the inability to detect miRNAs and other poly(A)−
transcripts and difficulty in distinguishing alternative splice
forms due to its strong 3′ bias.

CEL-seq2, an improved version of CEL-seq increased sensitivity,
reduced costs, and decreased hands-on time (Hashimshony et al.,
2016). To mitigate mRNA molecule counting biases, CEL-seq2
introduces 5 base pair UMIs upstream of the barcode. Utilizing
the SuperScript II Double-Stranded cDNA Synthesis Kit, coupled
with a modification of the CEL-seq primer length, notably
enhances the efficiency of the RT reaction. CEL-seq2 outperforms
the original CEL-seq method by detecting twice as many
transcripts and 30% more genes per cell. However, it is important
to note that despite its notable 3′ bias, CEL-seq2 does not offer
information on the majority of splicing events. Nevertheless, its
increased sensitivity and capability for individual transcript
counting provide a clear advantage for various applications in
transcriptomics.

(5) SUPeR-seq
In single-cell universal poly(A)-independent RNA sequencing

(SUPeR-seq), random primers with fixed anchor sequences are
utilized instead of the commonly used oligo-dT primers in cDNA
synthesis. This enables the detection of both poly(A)+ and poly
(A)− RNAs within a single cell (Fan et al., 2015b). The process
involves the utilization of the random primers with a fixed anchor
sequence (AnchorX-T15N6) to reverse-transcribe total RNAs
into first-strand cDNAs. Following the synthesis of the initial
cDNA strand, ExoSAP-IT is employed to digest excess primers,
preventing the formation of primer-dimer complexes. Using
terminal deoxynucleotidyl transferase and dATP with 1%
ddATP, a poly(A) tail is appended to the 3′ end of the initial
cDNA strand. Subsequently, poly(T) primers with an alternative
anchor sequence (AnchorY-T24) are applied to generate the
second-strand cDNA, which undergoes amplification through
PCR using AnchorY-T24 and AnchorX-T15 primers for sub-
sequent sequencing. SUPeR-seq has been utilized to investigate
the regulatory mechanisms of circRNAs during early embryonic
development in mammalians. However, it presents challenges for
high-throughput sequencing as well as molecule counting due to
the absence of UMIs and cell barcodes.

(6) MATQ-seq
In 2017, Sheng et al. (2017) introduced the multiple

annealing and dc-tailing-based quantitative single-cell RNA-seq
(MATQ-seq) method. This technique incorporates barcodes and
UMIs to sequence both polyA+ and polyA− RNAs, distinguishing
it from SUPeR-seq. The procedure encompasses converting total
RNAs into first-strand cDNA using primers designed for multiple
annealing and looping-based amplification cycles (MALBAC).
These primers contain mainly G, A, and T bases, along with
MALBAC-dT primers. After RT, the first-strand cDNA undergoes
dC tailing, followed by the synthesis of second-strand cDNA using
G-enriched MALBAC primers. UMIs are presented during second-
strand synthesis. Unlike Smart-seq2 and SUPeR-seq, MATQ-seq
utilizes UMIs to significantly reduce leading or trailing-end bias in
HEK293T transcripts. Additionally, MATQ-seq exhibits higher
sensitivity than Smart-seq2 and SUPeR-seq in capturing polyA−
RNAs, with a capture efficiency of 89.2%±13.2%. This improve-
ment enhances the efficiency of detecting the low-abundance
genes. MATQ-seq’s high accuracy and sensitivity allow for the
detection of subtle differences in gene expression among

individual cells within the same population. However, similar
to SUPeR-seq, the time-consuming cell isolation method invol-
ving a mouth pipette limits MATQ-seq’s throughput.

(7) FLASH-seq
FLASH-seq, a swift and highly profound full-length scRNA-seq

method, was developed by Hahaut et al. (2022). Several key
modifications were introduced to enhance the efficiency of the
Smart-seq2 protocol: (i) it combined the reverse transcription and
cDNA preamplification, streamlining the process; (ii) Superscript
IV, a more processive reverse transcriptase, replaced Superscript
II, and the RT reaction time was shortened; (iii) the amount of
dCTP was increased to favor the C-tailing activity of Superscript
IV and enhance the template-switching reaction; (iv) the 3′-
terminal locked nucleic acid guanine in the template-switching
oligonucleotide was replaced with riboguanosine; (v) the reaction
volume was reduced to 5 μL (Hahaut et al., 2022). These
modifications collectively led to a substantial decrease in both
time and cost. FLASH-seq can be completed in approximately
4.5 h, making it 2–3.5 h faster than other methods like Smart-
seq2. The cost per cell is lower than other commercial and non-
commercial methods, comparable to Smart-seq3, and amounts to
less than $1 per cell. Furthermore, FLASH-seq can detect a
substantial number of SNPs. It is considered suitable for
researchers seeking affordable, automation-friendly, robust, and
efficient methods for single-cell transcriptional profiling.

High-throughput scRNA-seq technologies
(1) Strategy for developing high-throughput scRNA-seq
In the early stages of scRNA-seq, micromanipulators or LCM

were employed to isolate individual cells for separate transcrip-
tome amplification and library construction. However, these
methods had limitations as they could only analyze a few cells in
a single experiment. The introduction of cell-specific barcodes
revolutionized the field, allowing thousands of single-cell
transcriptomes to be mixed together for library construction
and sequencing in a single run, enabling high-throughput
parallel sequencing. A notable advancement in this direction was
the development of the MARS-seq method, which combined
FACS with automatic liquid handling to successfully sequence
thousands of cells in a single experiment (Jaitin et al., 2014).
Three levels of barcodes were used to label cells, plates, and
mRNAs, facilitating the mixing of all materials for subsequent
automated processing. Similar to MARS-seq, STRT-Seq-2i aimed
to increase sequencing throughput by implementing a specialized
FACS and barcoding protocol (Hochgerner et al., 2017). This
method utilized a custom aluminum plate with 9,600 wells
arranged in 96 subarrays of 100 wells each, enabling the
simultaneous sequencing of 9,600 cells in one run. However,
despite the improvements in throughput achieved by these plate-
based methods, the number of cells that could be analyzed was
still limited.

The introduction of microfluidic techniques has fundamentally
addressed the challenges associated with high-throughput
single-cell operations. In 2012, the Fluidigm C1 system became
the first commercially available automated microfluidic platform
designed for the automatic isolation of cells, cell lysis, cDNA
synthesis, amplification, and library preparation for 96 single
cells simultaneously. However, the processing capacity of this
system was limited and fell short of meeting the demands for
high-throughput parallel sequencing. A revolutionary break-
through occurred in 2015 with the advent of droplet-based
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microfluidic scRNA-seq technologies. These approaches, exem-
plified by methods such as those developed by Klein et al. (2015)
and Macosko et al. (2015), enabled the concurrent processing of
thousands of cells (Klein et al., 2015; Macosko et al., 2015). This
marked a significant advancement, allowing for truly massive
parallel sequencing in the field of single-cell genomics.

Subsequently, additional high-throughput parallel sequencing
strategies were developed, including sci-RNA-seq (Cao et al.,
2017) and SPLiT-seq (Rosenberg et al., 2018). These approaches
employ a combinatorial indexing method to label cells without
the physical compartmentalization of single cells. Notably, these
technologies exhibit high cell labeling efficiencies, are straight-
forward to operate, and can substantially reduce the cost of
sequencing. In the following, we will delve into a detailed
discussion of these innovative technologies.

(2) Plate-based high-throughput scRNA-seq methods
High-throughput scRNA-seq methods based on microplates

involve sorting cells onto microplates through FACS and utilizing
barcodes to label cell transcripts for subsequent high-throughput
sequencing. These methods offer the advantage of processing any
number of individual cells without significantly impacting the
cost per cell. On the other hand, alternative high-throughput
approaches, such as droplet-based technologies like Drop-seq
(Macosko et al., 2015), InDrop (Klein et al., 2015), and 10x
Chromium (Zheng et al., 2017), tend to be cost-effective
primarily when analyzing a very large number of cells
simultaneously. The sequencing throughput of plate-based
methods is constrained by the number of microplates utilized.
The following section will provide a detailed discussion of these
technologies.
1) Quartz-seq. To decipher the biological functions and

fundamental causes of non-genetic cellular heterogeneity,
Sasagawa et al. (2013) developed the simple yet highly
quantitative Quartz-seq technique. Quartz-seq enhances the
simplicity and quantitative performance of whole-transcript
amplification by addressing three critical aspects. Firstly, in order
to overcome the problem of overabundance of byproducts in
previous poly(A) tail reaction-based whole-transcript amplifica-
tion techniques, Quartz-seq combines exonuclease I treatment, a
regulated poly(A) tail, and an optimized suppression PCR. This
strategic approach completely eliminates the synthesis of
byproducts, simplifying subsequent scRNA-seq analysis. Sec-
ondly, the technology adopts a robust DNA polymerase (Might-
yAmp DNA Polymerase) optimized for a single-tube reaction.
This choice of PCR enzyme enhances cDNA yield, improves the
reproducibility of whole-transcript amplification replication, and
reduces the number of required PCR cycles. Finally, Quartz-seq
optimizes the efficiencies of RT and second-strand synthesis by
adjusting the annealing temperature. Notably, all steps of this
method are consolidated into a single PCR tube, eliminating the
need for purification and involving only six reaction steps per
single cell. This streamlining significantly simplifies the Quartz-
seq approach, facilitating its high-throughput implementation.
Beyond its simplicity, Quartz-seq exhibits high quantitative
accuracy, reproducibility, and sensitivity. Consequently, it can
discern various types of non-genetic cellular heterogeneity and
differentiate between distinct cell types and cell-cycle phases
within the same cell type.

Quartz-seq2 (Sasagawa et al., 2018), an innovative high-
throughput scRNA-seq method, was developed as an extension of
Quartz-seq. This approach involves sorting single cells using

FACS into a 384-well plate, followed by RT using a primer that
combines an oligo-dT sequence, a cell barcode sequence, and a
UMI sequence. By applying advancements in multiple molecular
biological stages, including a major upgrade of poly(A) tagging,
Quartz-seq2 achieves excellent UMI conversion efficiency.
Notably, Quartz-seq2 utilizes a poly(A) tagging strategy based
on the combination of T55 buffer and the increment temperature
condition, resulting in an approximately 3.6-fold increase in the
amount of cDNA.

The UMI conversion efficiency of Quartz-seq2 is notably high,
ranging from 32% to 35%, surpassing that of other methods such
as CEL-seq2, SCRB-seq, and MARS-seq (7%–22%). Quartz-seq2
can identify more transcripts from fewer sequence reads at a
lower cost because of its increased efficiency. Similar to MARS-
seq, Quartz-seq2 employs FACS for cell sorting, a process that
requires skilled workers. Despite this requirement, the technol-
ogy’s enhanced UMI conversion efficiency and cost-effectiveness
make it a valuable method for scRNA-seq applications.
2) MARS-seq. MARS-seq, an automated and highly parallel

RNA single-cell sequencing technology developed in 2014 (Jaitin
et al., 2014), revolutionized the field by enabling the counting of
unique RNA molecules through the introduction of UMIs in the
oligo-dT primer. Single cells are sorted using FACS into 384-well
plates as part of the MARS-seq procedure. The RT and library
construction processes follow the CEL-seq protocol, ensuring a
systematic and reproducible approach. One of the key innova-
tions of MARS-seq lies in its automation, with every step of the
method being executed by a liquid-handling robot. This
automation improves the technique’s repeatability and leads to
a significant boost in throughput. The high-throughput and
automated nature of MARS-seq makes it applicable to diverse
tissues and organs in both normal and disease states. By
delineating the cell-type and cell-state compositions of tissues,
MARS-seq contributes to a comprehensive understanding of
these biological entities, linking this information to detailed
genome-wide transcriptional profiles.

In 2019, the research team developed an integrated pipeline
for index sorting and massively parallel single-cell RNA sequen-
cing (MARS-seq2.0), building on the foundation of the MARS-seq
method (Keren-Shaul et al., 2019). MARS-seq2.0 offers the
capability to efficiently sequence 8,000–10,000 cells in a single
run, representing a significant enhancement in throughput.
Notably, the method achieves an eight-fold reduction in the
volume of the RT reaction, decreasing it from 4 μL to 500 nL. The
cost of preparing single-cell libraries will drop six-fold as a result
of this volume reduction. MARS-seq2.0 is a 3′-based scRNA-seq
technique, which limits its use for determining alternative
splicing isoforms or particular sequences at the 5′ end of the
gene. This is an essential point to remember. Despite this
limitation, the integration of indexed FACS sorting with scRNA-
seq in MARS-seq2.0 proves beneficial for identifying rare
subpopulations and processing rare cells in human clinical
samples. Moreover, MARS-seq2.0 provides a flexible platform
that enables simultaneously obtain multiple layers of information
on the same single cell, encompassing genetics, signaling,
epigenetics and spatial location by combining unbiased tran-
scriptional mapping with large numbers of fluorescent markers.
This multifaceted approach contributes to a deeper molecular
understanding of physiological processes and diseases.
3) SCRB-seq. To economically characterize the major patterns

of gene expression variation across heterogeneous ppulations,
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Soumillon et al. (2014) developed single-cell RNA barcoding and
sequencing (SCRB-seq) based on the Smart-seq protocol to profile
mRNAs from large numbers of cells using minimal reagents and
sequencing reads per cell. In SCRB-seq, FACS is used to sort
individual cells into a 384-well plate. Poly(A)+ mRNA is
converted to cDNA by RT, which uses a template-switching
reverse transcriptase and RT primers made of barcodes, UMIs,
and a poly(T) primer. After that, strand information is preserved
and the decorated cDNA from several cells is combined and
amplified for sequencing using a modified transposon-based
fragmentation technique that enriches for the 3′ end. SCRB-seq
technology is capable of sequencing about 12,000 single cells,
providing deep and full-length transcriptome coverage sequen-
cing. Moreover, it requires roughly two times fewer enzymatic
reactions, purifications, and liquid transfer steps than the MARS-
seq approach (Jaitin et al., 2014). SCRB-seq, in contrast to Smart-
seq, adds unique cell barcodes during RT, making it easier to
identify reads that come from the same cell and boosting
sequencing throughput. Nevertheless, sequencing a larger
number of single cells still faces challenges.
4) STRT-seq-2i. STRT-seq-2i is a dual-index 5′ single-cell and

nucleus RNA-seq method designed to significantly increase
throughput (Hochgerner et al., 2017). It utilizes a specially
designed 9,600-microwell plate, contributing to enhanced
efficiency. The microwell array allows for imaging verification
of single-cell wells, reducing the occurrence of doublets in a single
well. In addition to maintaining several advantages, such as 5′-
end reads that reveal transcription start sites, the addition of
UMIs for absolute quantification, and the use of single-read
sequencing rather than paired-end sequencing to maximize cost
efficiency, STRT-seq-2i is still compatible with the previously
described STRT-seq method. This technique has demonstrated its
adaptability to various experimental contexts by being used to
examine the transcriptional profile of both fresh single mouse
cortical cells and frozen post-mortem human cortical nuclei.

(3) Microfluidics-based high-throughput scRNA-seq methods
Droplet- and microwell-based platforms stand out as the

predominant technologies for high-throughput scRNA-seq,
capable of profiling transcriptomes from approximately 10,000
individual cells in a single experiment. Both methods basically
involve separating individual cells into many nanoliter-sized
containers (such as microwells or water-in-oil droplets) that
contain the chemicals required for RT. The integration of cell
barcoding strategies into these microfluidic platforms signifi-
cantly enhances throughput while concurrently reducing costs
when compared with both nonmicrofluidic methods and micro-
fluidic methods featuring valves. This advancement is particu-
larly advantageous for biomedical research applications
demanding the comprehensive transcriptomic profiling of a vast
number of cells.
1) Droplet-based scRNA-seq technologies. (i) InDrop. The

fundamental technology of inDrop (Klein et al., 2015) consists
of encasing single cells into droplets that contain lysis buffer, RT
reagents, and barcoded hydrogel microspheres (BHMs). Each
BHM contains ~109 photocleavable barcoded primers (147,456
distinct barcodes). The microfluidic device employed in this
technology incorporates inlets for carrier oil, cells, lysis/RT
reagents, and BHMs, along with an outlet for droplet collection.
Each BHM is covalently linked to barcoded primers, featuring a
T7 RNA polymerase promoter, an Illumina sequencing adaptor,
a unique cell barcode, UMI, and a poly(T) tail, connected via a

photo-releasable bond. All BHMs within a sample share the same
cell barcode for sample distinction but possess distinct UMIs for
precise transcript counting. After encapsulation, ultraviolet (UV)
exposure facilitates the photo-release of barcoded primers,
allowing mRNA from lysed cells to be barcoded during cDNA
synthesis while remaining confined to the same droplet.
Subsequently, cDNAs from all cells are pooled post-droplet
breakage for library construction and sequencing, following the
CEL-seq protocol (Hashimshony et al., 2012). InDrop’s intrinsic
scalability, unlike conventional methods, is not constrained by
the number of reaction chambers. Additionally, the operation
processes are simplified by conducting lysis and RT within the
droplets. However, a notable drawback of inDrop is its relatively
low mRNA capture efficiency (~7%), rendering genes with
transcript abundances below 20–50 transcripts challenging to
reliably detect in a single cell.

(ii) Drop-seq. Similar to inDrop, Drop-seq is designed for the
high-throughput analysis of mRNA expression in thousands of
single cells. It achieves this by co-encapsulating each cell with a
uniquely barcoded bead within nanoliter-scale water-in-oil
droplets for simultaneous processing (Macosko et al., 2015). In
contrast to inDrop, which utilizes barcoded hydrogel micro-
spheres, Drop-seq employs beads made of an unchanging hard
resin. These resin beads are directly synthesized with barcoded
primers, which include a poly(T) sequence for mRNA capture, a
cell barcode, a UMI, and a universal PCR handle for amplifica-
tion. Each bead contains over 108 different primers. Following
cell lysis in the droplet, released mRNAs hybridize with the
primers’ poly(T) tails on companion beads to generate single-cell
transcriptomes that are affixed to microparticles (STAMPs).
Following droplet breakup, thousands of STAMPs are pooled
together, reverse-transcribed, PCR-amplified, and sequenced in a
single reaction. The Drop-seq method boasts a significantly larger
number of unique barcodes (16,777,216) compared with inDrop
(147,456), enabling cost-effective and rapid high-throughput
analysis.

(iii) 10x Genomics. The 10x Genomics system (Zheng et al.,
2017) is a fully commercial platform that shares some similarities
with inDrop and Drop-seq. The gel bead in emulsion (GEM) is the
fundamental component of this method. To create GEM, an 8-
channel microfluidic device is used. In about 6 min, this chip can
produce 100,000 GEMs, each of which can contain thousands of
cells. Every gel bead in the GEM contains barcoded oligonucleo-
tides comprising Illumina adapters, 10x barcodes, UMIs, and a
poly(T) tail, which primes poly(A)+ RNA transcripts. After co-
encapsulation of cells and gel beads into droplets, cell lysis occurs
immediately, releasing mRNAs. Following this, gel beads dissolve
and release the barcoded oligonucleotides, enabling RT of poly(A)
+ RNAs. The RT reaction takes place within each individual
droplet, resulting in cDNA molecules that possess a shared
barcode per GEM, a unique UMI, and end with a TSO at the 3′
end. The barcoded cDNA molecules are then combined for PCR
amplification, adhering to the Smart-seq methodology, after the
emulsion has been broken.

InDrop, Drop-seq, and Chromium are three similar platforms
that employ droplet-microfluidic approaches to isolate single cells
for high-throughput sequencing. All three methods can process
tens of thousands of cells rapidly each day. The three
technologies differ in the following four aspects:
Firstly, inDrop and 10x Genomics use hydrogel microspheres,
while the beads used in Drop-seq are hard resin. Encapsulation of
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the soft and pliable hydrogel beads used in inDrop and 10x
Genomics, which are densely packed in the microfluidic channel,
can be synchronized to produce a super-Poisson distribution. A
double Poisson distribution governs the encapsulation of tiny
hard beads for a single cell and bead in the same droplet. Thus,
inDrop and 10x Genomics can achieve significantly higher cell
capture efficiency compared with Drop-seq. It has been reported
that the cell capture rate of 10x Genomics is about 50% (Zheng et
al., 2017).

Secondly, inDrop and 10x Genomics use hydrogel beads,
allowing the primers to be fixed inside the beads, whereas the
primers of Drop-seq can only be fixed on the surface of the smaller
hard beads. After encapsulation, inDrop uses UV-irradiation-
induced cleavage to release primers. The 10x Genomics releases
all of the primers into the solution by directly dissolving the beads
to improve the capture efficiency of mRNA. In contrast, the
primers of Drop-seq cannot be released from the beads, and
mRNA molecules hybridize to the poly(T) tail on the beads to
form STAMPs for RT, which could be a drawback of Drop-seq
compared with inDrop and 10x Genomics.

Thirdly, in Drop-seq, droplets are split immediately as soon as
the mRNA and primer hybridize, and all STAMPs are mixed
together to perform RT. Instead, in the inDrop and 10x Genomics
methods, RT reagents are co-encapsulated into droplets, and RT
reactions are conducted independently within each droplet,
which is beneficial for improving the specificity of cDNA
conversion, enhancing relative yield, and reducing reagent
consumption (Streets et al., 2014).

Finally, the three platforms adopt different library construction
strategies. While Drop-seq and 10x Genomics use a template-
switching procedure akin to the well-known Smart-seq chem-
istry, inDrop uses the CEL-Seq approach. They so inherit the
benefits and drawbacks of Smart-seq and CEL-seq, respectively.

(iv) MULTI-seq. To deliver cell-specific barcodes during RT, all
of the droplet-based techniques previously discussed generally
use the co-encapsulation strategy, which entails simultaneously
encapsulating cells and barcoded beads. The MULTI-seq method
(sample multiplexing for single-cell and single-nucleus RNA
sequencing using lipid-tagged indices) was recently introduced
by McGinnis et al. (2019b) as an alternative strategy that makes
unique use of cell barcodes. In this technology, DNA barcodes are
labeled onto the plasma membranes of single cells by hybridiza-
tion to an “anchor” lipid-modified oligonucleotide (LMO). The
hydrophobic 5′ lignoceric acid amide of the “anchor” LMO binds
to membranes; hybridization to a “co-anchor” LMO with a 3′
palmitic acid amide amplifies the hydrophobicity of the complex,
extending membrane retention. The 3′ poly(A) capture sequence,
the 8 bp sample barcode, and the 5′ PCR handle make up the
LMO. Each single cell or nuclei carried by the LMOs is co-
encapsulated with an mRNA capture bead into an emulsion
droplet generated by the 10x Genomics system. Sample
demultiplexing is made possible by the release of endogenous
mRNAs and LMOs upon in-drop cell lysis, which both hybridize
to the mRNA capture bead and attach to a common cell barcode
during RT. Endogenous mRNAs and LMOs are separated by size
selection following amplification, enabling pooled sequencing at
user-defined ratios. Any cell type or nucleus from any species
with an accessible plasma membrane can be barcoded using this
method. Moreover, this approach involves minimal sample
handling, preserving cell viability and endogenous gene expres-
sion patterns.

2) Microwell-based scRNA-seq methods. (i) CytoSeq. CytoSeq, a
highly scalable scRNA-seq method, can simultaneously analyze a
few thousand cells and can be easily scaled to 10,000 or 100,000
cells, with the detection of approximately 100 genes per cell (Fan
et al., 2015a). This method employs a recursive Poisson strategy
to adjust the number of cells in suspension, facilitating high-
throughput cell settling in 1/10 of 100,000 microwells by
gravity. Due to the nanoliter volumes used in the reactions, the
cost of library preparation is exceptionally low. Additionally,
CytoSeq is advantageous as it is not restricted to specific cell sizes
and shapes, enabling the study of expression profiles in large and
heterogeneous cell populations. This flexibility allows for the
detection of rare cell types within a large background population.

(ii) Seq-Well. Seq-Well is a portable, cost-effective, user-
friendly, and efficient scRNA-seq method designed for low-input
samples (Gierahn et al., 2017). This approach utilizes a picowell
array where barcoded mRNA capture beads and cells are loaded,
with each well accommodating one cell and nearly one bead.
After the cells settle into the wells by gravity, a semipermeable
membrane seals the array, creating a unique environment for
each well that allows buffer exchange but prevents the migration
of macromolecules. Subsequently, cells are lysed, and the process
of amplification and sequencing is carried out. With approxi-
mately 86,000 subnanoliter wells, Seq-Well plates enable the
simultaneous analysis of transcriptomes in thousands of cells
from diverse sources. This method is particularly well-suited for
low-sample inputs, such as tissue pinches, fine-needle aspirates,
and challenging-to-study cells like hepatocytes and granulocytes
(Kumar, 2021). Notably, Seq-Well’s implementation requires
only a picowell array, a pipette, a polycarbonate membrane, an
oven or heat source, a clamp, and a tube rotator to generate a
stable cDNA product. This simplicity makes it adaptable to
resource-limited environments such as clinic and remote
locations (Aicher et al., 2019).

(iii) ICELL8. ICELL8 is a microwell-based microfluidic system
that enhances throughput by incorporating a microchip contain-
ing 5,184 nanowells, allowing for the capture and processing of
approximately 1,300 single cells (Goldstein et al., 2017). Each
nanowell contains preprinted oligonucleotides, which include an
oligo-(dT30) primer, a well-specific barcode sequence, and a UMI.
The process involves dispensing single-cell suspensions into the
microchip nanowells using the multi-sample nanodispenser
(MSND) and subsequently lysing the cells through freeze-thaw
cycles. Following cell lysis, RT is carried out to synthesize cDNAs,
employing the SCRB-seq method. Ultimately, cDNAs from
hundreds of cells are pooled into a single tube for library
construction. The method offers several advantages: i) the use of
the MSND instrument for accurate dispensing of cells into
nanowells, eliminating errors associated with manual pipetting;
ii) incorporation of imaging software to identify nanowells
containing viable single cells, ensuring that only wells with
single cells are processed into sequencing libraries, resulting in a
low cell multiplet rate (<3%); iii) the capability to load up to eight
experimental conditions across one array using a multi-sample
nanodispenser, enabling the simultaneous processing of 800–
1,400 cells on one chip with 5,184 nanowells in a single
experiment.

To enhance the capture rate of ICELL8 and enable the
simultaneous processing of more than 5,000 cells for sequencing
libraries, Shomroni et al. (2022) introduced a novel scRNA-seq
method called CellenONE-ICELL8. This method combines the
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ICELL8 processing instrument with the CellenONE isolation and
sorting system. CellenONE relies on image-based single-cell
isolation, enabling the selection of highly purified individual
cells based on parameters such as cell morphology, size, or
fluorescence markers before subsequent sample processing and
sequencing. The integration of both instruments in CellenONE-
ICELL8 significantly improves cell capture efficiency compared
with the ICELL8 system alone, raising the number of captured
cells from the typical 1,200 to 1,400 cells to over 3,300 cells.
Furthermore, the utilization of full-length chemistry (SMART-seq
technology) in this method can detect non-coding RNAs,
especially lengthy intergenic non-coding RNAs, as well as
intronic and intergenic sequences.

(4) Combinatorial indexing-based high-throughput scRNA-seq
technologies
1) Sci-RNA-seq. Cao et al. (2017) developed the first combina-

torial indexing method for high-throughput scRNA-seq, termed
sci-RNA-seq. This innovative method facilitates the analysis of
the transcriptomes of large numbers of single cells or nuclei,
providing 3′ coverage and high-depth sequencing through the
use of double UMI barcoding. The scalability of sci-RNA-seq
allows for the generation of approximately 4×104 individual cell
transcriptomes in a single experiment when employing indexing
up to 576×960. This scalability enables the processing of more
cells with sublinear cost scaling by incorporating additional
rounds of indexing or/and using more barcoded RT and PCR
primers. But it’s crucial to remember that sci-RNA-seq is not
without its drawbacks. These include laborious experimental
procedures, the high expense of high-throughput transposition
reactions, and a notable cell loss brought on by FACS sorting.
2) SPLiT-seq. SPLiT-seq represents another innovative

combinatorial indexing method designed for scRNA-seq analysis,
allowing the examination of fixed tissues preserved in 1.33%
formaldehyde (Rosenberg et al., 2018). Unlike sci-RNA-seq,
SPLiT-seq inserts second and third-round barcodes into cDNA by
ligation. This approach offers a simpler, gentler, and more cost-
effective workflow. The first-round barcodes of SPLiT-seq can act
as sample identifiers, thus enabling highly multiplexed parallel
sample processing. SPLiT-Seq is especially well suited for the
analysis of fixed, difficult-to-completely disaggregate cells or
nuclei produced from clinically relevant tissue samples. However,
some limitations should be considered, including potential
chemical modifications to mRNA caused by aldehyde-based cell
fixation, suboptimal reaction efficiency of RT and ligation within
fixed cells due to the intricate cross-linked intracellular environ-
ment, and potential degradation of RNA quality during the
fixation process, leading to reduced detected gene levels.

Single-nuclei RNA-sequencing

ScRNA-seq is a potent tool for exploring cell types, functional
processes, and dynamic states in intricate tissues. However, its
application is limited when dealing with archived samples or
tissues that cannot be easily dissociated, preventing the explora-
tion of new cell types or crucial information related to immunity
and disease. To address this difficulty, scientists have resorted to
single-nuclei RNA sequencing (snRNA-seq) technologies, in
which RNA sequencing experiments are performed using nuclei
as proxies rather than entire cells. Several snRNA-seq methods
have been developed to analyze RNA in single nuclei obtained
from frozen, lightly fixed, or fresh tissues, including DroNc-Seq

(Habib et al., 2017), Div-seq (Habib et al., 2016), snDrop-seq
(Lake et al., 2019). These approaches extend the applicability of
transcriptomic analyses to a broader range of sample types and
conditions.

The use of snRNA-seq techniques has proven valuable in
various research areas due to the high correlation observed
between genes detected by snRNA-seq and traditional scRNA-seq
methods (Fischer and Ayers, 2021). These techniques find
application in diverse sample types, such as fresh tissues like the
brain (Affinati et al., 2021), heart (Nicin et al., 2021), kidney
(Barwinska et al., 2021; Muto et al., 2021), pancreas (Basile et
al., 2021), muscle (Petrany et al., 2020) or adipose tissue (Sun et
al., 2020b), archived tissues (Basile et al., 2021), plant cells
(Conde et al., 2021). Despite these advantages, isolated nuclei are
often more adhesive compared with isolated cell types. Therefore,
precautions should be taken to prevent clumping, which can lead
to inflated doublet rates. Furthermore, it’s important to note that
certain gene transcripts may exhibit enrichment differences
between snRNA-seq and scRNA-seq datasets. For instance, long
non-coding RNAs (lncRNAs) are enriched in snRNA-seq
datasets, while mitochondrial transcripts, residing in the cytosol,
are only present in scRNA-seq datasets (Fischer and Ayers,
2021). Researchers need to carefully evaluate whether such
sublocalized genes are crucial for their specific research project
before opting for individual nuclei for sequencing.

Computational methods for scRNA-seq data

The original data format of scRNA-seq and most of the current
scRNA-seq analysis processes are based on FASTQ files (or
compressed format fq.gz). Illumina platform sequencing data
generates BCL format files by default, which can be converted
through CellRanger mkfastq. The analysis processes of scRNA-
seq include data preprocessing, processing and extended
downstream analysis (Figure 4), among which data preproces-
sing includes quality control, read alignment and expression
quantification; data processing includes normalization, batch
effect correction, imputation, feature selection (HVG selection),
dimension reduction and clustering, cell typing annotation,
differential expression analysis (DEGs), visualization; extended
downstream analysis includes pseudotime, cell-cell interaction
(CCI), pathway enrichment analysis, gene regulatory network
(GRN) and other downstream analysis. On the whole, scRNA-
seq analysis methods have mushroomed emerge in endlessly,
there is no absolutely perfect method that applies to all scenes,
it is important to obtain the biological information from
analysis tools and the difficulty is selecting the most appro-
priate method. Here, we proposed to summarize common
single-cell transcriptome analysis methods with their advan-
tages and disadvantages as well as the scope of application to
make suggestions.

Data pre-processing
The original sequencing data by filtering out low-quality reads
and environmental interference were aligned and quantified with
reference genomes. Consequently, the feature count matrix for
each cell and auxiliary files recording other information were
obtained, which were used for downstream data analysis (Figure
4A).

(1) Quality control
Low-quality sequencing data was inevitably produced due to
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the sequencing instrument problem, artificial operation, cell
spontaneous cases, or the existence of empty droplets, doublets,
dead cells, etc. (Chen et al., 2019a; Hao et al., 2021b). Empty
droplets usually appear when the droplet captures extracellular
background transcripts instead of cells (Ilicic et al., 2016;
Kolodziejczyk et al., 2015). A highly subjective method is to
determine a UMI threshold according to the knee point and filter
out cells with low UMI count. DropEst (Petukhov et al., 2018),
EmptyDrops (Lun et al., 2019), and DIEM (Alvarez et al., 2020)
were then used to enhance the filtering effect. DropletQC
(Muskovic and Powell, 2021) quantifies the nuclear fraction
score of unspliced pre-mRNA content. The choice of the MT gene
threshold requires a comprehensive consideration of cell
physiology factors, though it is a dead cell measurement
(Subramanian et al., 2022). In recent years, deep-learning-based
methods, such as neural-network-based EmptyNN (Yan et al.,
2021), and deep-generation-models-based CellBender (Fleming
et al., 2019), have also emerged and enabled the effective
identification of the background transcripts in empty droplets.

Doublet is the case that two cells are contained in one single
drop, which can be divided into homo-doublet and hetero-
doublet based on the transcriptional distribution, both obeying
Poisson statistics (Bloom, 2018). The vast majority of methods
are based on gene expression calculations, using prior knowledge
or deep learning to obtain the differences between unimodal and
bimodal cells, and then train the classifier for screening, e.g.,
nearest-neighbor-based DoubletFinder (McGinnis et al., 2019a),
Scrublet (Wolock et al., 2019); deconvolution-based DoubletDe-
con (DePasquale et al., 2019), variational-autoencoder-based
Solo (Bernstein et al., 2020), and ensemble- algorithm-based
Chord (Xiong et al., 2021a). Besides, Scds is another screening
method relying on the co-expression-based doublet scoring and
binary-classification-based doublet scoring strategy to achieve

doublet separation over the scRNA-seq expression data (Bais and
Kostka, 2020). A few methods use other features, such as the
demuxlet which uses natural genetic variation information
guidance experiments and filters computationally (Kang et al.,
2018).

Reasonable quality control needs to comprehensively consider
both technical and biological factors, which is also the main
direction of the current research. A biological data-driven self-
learning unsupervised quality control method called ddqc was
recently proposed to determine specific thresholds of various GC
metrics (Macnair and Robinson, 2023).

(2) Read alignment and expression quantification
The remaining high-quality cells after quality control require

mapping these short reads to a specific reference genome for
alignment to make the quantification of gene expression levels.
RNA read alignment is usually divided into two steps: alignment
of reads for indexing and mapping RNA splicing sequence, the
former step was shared with DNA read alignment, solving the
mismatch problem and setting up index references; the latter step
is unique for RNA read alignment and provides connectivity
information.

The early second-generation sequencing results were dozens of
pair length base reads. Seed-to-extend methods (Buhler, 2001)
(including MAQ (Li et al., 2008a), SOAP (Li et al., 2008b),
CloudBurst (Schatz, 2009), ZOOM (Lin et al., 2008)), Burrows-
Wheeler Transforming methods (Burrows and Wheeler, 1994)
(including SOAP2 (Li et al., 2009), Bowtie (Langmead et al.,
2009), BWA (Li and Durbin, 2009)), Needleman-Wunsch
method (including Novocraft (Hercus, 2009)), and suffix-tree
algorithm method (including MUMmer 2 (Delcher et al., 2002))
are effective tools for reads alignment of million level short-chain
DNA sequencing. For Bowtie, an FM-index method dependent on
Burrows-Wheeler Transforming is used, the result only reports

Figure 4. Overview of the single cell analysis workflow. A, The cell-gene matrix count is formed based on sequencing data through single cell read alignment and quantification
methods in pre-processing stage. B, High quality cell matrix used for analysis is obtained by processing the original gene expression matrix, make batch correction to remove
batch effect, normalize to reduce biological differences and fill in genes that were missed in sequencing. C, Make cell types assignment based on prior references or not. D, Cells
with similar transcriptome characteristics are grouped into one cell group called cluster and visualization of cells can be realized by the method of dimension reduction.
Differential expression analysis (DEGs) checks the significance of the classification between groups. E, Pseudotime analysis can restore the dynamic process of cellular transcript
change. F, Transcriptome regulatory relationships between cells can be inferred through cell-cell interaction analysis.
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one if the reads have multiple accurate matches, it greatly
optimizes the running memory and alignment speed compared
with MAQ (Ferragina and Manzini, 2001). BWA is another
BWT-based alignment method, using the new SAM (Sequence
Alignment/Map) format to output the alignment results. Based
on MAQ and Bowtie two short-chain DNA alignment algorithms,
Cole Trapnell proposed TopHat, the first RNA-seq alignment
method for NGS data in 2009 using the 2-bit-per-base encoding
to achieve efficient alignment of reads to splice sites in the
mammalian genome without any prior knowledge of the splice
sites (Trapnell et al., 2009).

The above methods decrease the alignment accuracy pre-
cipitously when the base pair length exceeds 50 bp (Gupta et al.,
2018; Lebrigand et al., 2020). Two main categories are used in
NGS single-cell sequencing analysis: Bowtie2-based methods and
seed-strategy-based methods (Langmead and Salzberg, 2012).
Bowtie2 is an upgrade to the Bowtie, retaining the FM-index
dependent BWT algorithm core, which permits gapped align-
ment and uses single-instruction multiple-data (SIMD) to extend
to the long sequencing alignment while increasing the running
speed. Based on Bowtie2, Daehwan Kim propose TopHat2 (Kim
et al., 2013) and HISAT (Kim et al., 2015) successively. The
main methods for seed strategy are STAR (Dobin et al., 2013)
and Subread (Liao et al., 2013). Based on the Maximal Mappable
Prefix (MMP) ideas, STAR adopted the strategy of sequential
retrieval to set the longest partial reads matching with the
reference as seed 1, the rest read will continue to match, in turn is
called from seed 2 to seed n. It is worth noting that Rsubread
implements the first read alignment and gene quantification
process based entirely on the R language platform (Liao et al.,
2019).

The gene expression quantification can be divided into pseudo-
alignment quantification and read-alignment-based quantifica-
tion. Pseudo-alignment refers to the alignment of all reads
mapping to the reference genome without the rigorous two-step
method described above, including the selected k-mers alignment
method (Sailfish (Patro et al., 2014), Kallisto (Bray et al., 2016),
Salmon (Patro et al., 2017), RapMap (Srivastava et al., 2016))
and Barcode-UMI-Set (BUS) alignment method BUStools (Melsted
et al., 2019). Kallisto-BUStools is the latest workflow that uses
the BUS file format for initial data pre-processing, like the
BUStools, the pseudo-alignment result and quantification counts
are saved in the BUS files (Melsted et al., 2021). On the other
hand, read-alignment-based methods rely on the result of the
RNA read alignment method to quantify the gene. CellRanger is
the official open-source data pre-processing software designated
by 10x Genomic company to replace Longranger (Zheng et al.,
2017). STARsolo is a tool to replace the mapping/quantification
function for Cellranger, it can realize the analysis of multi-
platform sequencing data and the quantification of transcriptome
features beyond gene expression (Kaminow et al., 2021). Other
read-alignment-based gene expression quantification like UMI-
tools (Smith et al., 2017), zUMIs (Parekh et al., 2018), Alevin-fry
(He et al., 2022), DropEst (Petukhov et al., 2018), RainDrop
(Niebler et al., 2020), baredSC (Lopez-Delisle and Delisle, 2022),
BCseq (Chen and Zheng, 2018) use various quality filter and
barcode/UMI treatment strategy to improve the performance of
CellRanger to some extent.

Both CellRanger and STARsolo have a good running speed
while processing all kinds of single-cell transcriptome datasets,
including 10x Chromium, with extremely high accuracy.

However, under the premise of obtaining almost identical results,
the latter increased the running speed by at least five times
compared with the former, which also verifies the purpose of
using STARsolo to replace CellRanger by Alexander Dobin et al.
(Brüning et al., 2022; Chen et al., 2021a; You et al., 2021).

Data processing
After making the necessary adjustments to the expression matrix
(Normalization, Batch Effect Correction, Imputation), biological
information can be fully mined from single-cell transcriptomic
data for analysis. Seurat and Scanpy perform the modular and
scalable processing of the above processes based on R and Python
respectively and are currently the mainstream analysis process of
single-cell transcriptomic data (Satija et al., 2015; Wolf et al.,
2018). The conventional analysis process and expected proces-
sing results can be found in total analytical framework (Figure
4B–D).

(1) Normalization
In sequencing processing, due to technical reasons or

biological differences between cells themselves, may cause library
size differences in the same samples (between cells) or between
different samples (Marinov et al., 2014). The infinite number
methods process according to the library size, according to the
specific principle, they can be roughly divided into global-scaling-
based normalization, spike-in normalization, and other data
transformation model normalization.

The global scaling method was originally developed for the
bulk RNA analysis by scaling the global data with a specific
scaling factor (Finak et al., 2015). Counts per ten-thousand
(CPT) transformation and count per million (CPM) transforma-
tion are common linear scaling methods, without considering the
spike-in count, they scale all per UMI/total UMI count
equidistantly. Other normalization methods include reads per
million (RPM) (Mortazavi et al., 2008), trimmed mean of M
values (TMM), DESeq (Robinson and Oshlack, 2010), upper-
quartile scaling (Bullard et al., 2010), FPKM (Trapnell et al.,
2010), RPKM (Tu et al., 2012) have better stability for extreme
values compared with linear scaling, therefore have a wider
range of applications like the RPKM/FPKM. However, when
using such methods alone for the normalization of the single-cell
transcriptome, because of the sparsity and inflated false positives
of the data, the effect is not acceptable (Evans et al., 2018).
Improvements are often needed when combined with specific
methods. SCnorm uses a quantile regression method to evaluate
the scale factors among different sequencing depth dependence
cell groups (Bacher et al., 2017). Based on the assumption of
negative binomial (NB) distribution for gene original count with
the true count, bayNorm uses an integrated Bayesian model for
scRNA-seq data normalization (Tang et al., 2020).

Spike-in normalization method can be regarded as another
expansion of the global scaling method, as the scaling factor is
calculated from spike-in genes. It is noted that adding informa-
tion about RNA spike-ins to other methods can also improve the
effect of standardization like SCnorm. GRM is a method based on
the gamma distribution of the spike-in ERCC molecule concen-
tration in which ERCC is a calibration material commonly used in
sequencing (Ding et al., 2015). BASiCS is an automated Bayesian
normalization method applying the Poisson hierarchical model
to spike-in (technical) genes for cell specific normalization
constants inference (Vallejos et al., 2015).

In the above methods, genes were scaled under the assumption
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of constant intracellular RNA number which can be deceitful, so
other transformation models adopted different strategies. Due to
the problem of zero-inflated in the single-cell transcriptomic data,
some of the models were designed for this purpose, for example,
the relative log expression (RLE) method ascend (Senabouth et
al., 2019) and the NB-based models like Dino (Brown et al.,
2021), scTransform (Hafemeister and Satija, 2019). Other
transformation model normalization method like MUREN uses
the least trimmed squares (LTS) regression algorithm (Feng and
Li, 2021); Sanity uses the log transcription quotients (LTQs)
inferred from UMI count as the input of a Bayesian framework to
avoid the Poisson fluctuations, as the LTQs vector changes
estimate the gene expression values (Breda et al., 2021); PsiNorm
is an unsupervised Pareto distribution scale parameter based
method to make improvements to the normalization efficiency
and accuracy (Borella et al., 2021). Charles Wang made a
comparison of total of eight normalization methods, including
the sctransform, TMM, and DESeq, wherein the sctransform and
logCPM (the built-in processing method of Seurat) are least
affected by data and are most stable over variable datasets (Chen
et al., 2021a).

(2) Batch effect correction
Due to the experimental design, sequencing platform, sequen-

cing time, and personnel operation process, different single-cell
transcriptome sequencing data will differ significantly in mRNA
capture efficiency, and sequencing depth to generate the batch
effect among samples (Chen et al., 2019a; Hwang et al., 2018;
Tung et al., 2017). Theoretically, the technical variation can be
eliminated through experimental strategies, but due to the
objective limitations of the experimental process and sequencing
instrument errors, the batch effect will inevitably be introduced
more or less. Correction with computational methods is
necessary to solve imperfect experimental design, usually used
methods can be divided into mutual nearest neighbor (MNN)
method, latent-space-based method, graph-based method, DL
method, and other methods.

MNN first identifies the most similar cells of the same cell type
between different batches, and then uses these cells for batch
effect correction, including batchelor (Haghverdi et al., 2018),
Scanorama (Hie et al., 2019), Canek (Loza et al., 2022). Another
class of methods using MNN is based on latent space after
dimension reduction, like Seurat (Satija et al., 2015), BEER
(Zhang et al., 2019b), SMNN (Yang et al., 2021a), iSMNN (Yang
et al., 2021b). For example, Seurat uses the MNN pairs (called
“anchors”) in the canonical correlation analysis (CCA) latent
space to match similar cells while BEER uses the principal
component analysis (PCA) sub-spaces for screening poor similar
subgroups. SMNN and iSMNN adopt supervised machine
learning and iterative supervised machine learning separately
to refine MN-pairs trained from information on pre-correction
cell clustering or iterative cell clustering.

Latent space-based methods refer to the method of performing
batch effect correction in the hidden space or embedding after
dimensionality reduction, besides the MNN cluster-based strat-
egy, they also contain PCA-related space method harmony
(Korsunsky et al., 2019), FIRM (Ming et al., 2022), Monet
(Wagner, 2020); t-distributed stochastic neighbor embedding (t-
SNE) space method sc_tSNE (Aliverti et al., 2020) and ZINB-
WaVE (Gao et al., 2019). Harmony is widely used to remove
batch effects between samples, sequenced cells are fed into a
single common embedding using the PCA method, then

circulated iteratively between maximum diversity clustering
and linear batch correction until a specific correction factor is
assigned to each cell which can be used for subsequent batch
effect removal. Sc_tSNE method introduces gradient descent’s
algorithm for the traditional t-SNE algorithm optimization, and a
linear correction is used subsequently (Aliverti et al., 2021).
ZINB-WaVE was originally designed to perform gene extraction
in single-cell data, Risso et al. (2018) extended this method to
mini-batch optimization.

Graph-based methods use cell-gene expression matrix to
transform the digital information into the spatial constructed
graph, where nodes represent different types of batches and
weights of edges are based on different calculation methods.
BBKNN uses the k-nearest neighbor cells to construct a graph
(KNN graph), and the batch effect correction is implemented by
merging the graph of individual cells across different data sets
using the uniform manifold approximation and projection
(UMAP) method, which is also the default method in Scanpy
workflow (Polański et al., 2020; Wolf et al., 2018). Bo Wang
proposed “ghost cell” (k-means algorithm cluster center by
default) in OCAT to make a bipartite graph for cell connection
(Wang et al., 2022a).

In recent years, the rapid development of deep learning
methods has also provided new ideas for batch-effect correction,
realizing efficient and large-throughput data processing, like
INSCT (Simon et al., 2021) (triplet neural networks), CLEAR
(Han et al., 2022) (self-supervised contrastive learning), BER-
MUDA (Wang et al., 2019e) (transfer learning), iMAP (Wang et
al., 2021a) (VAE-GAN), ResPAN (Wang et al., 2022e) (Wasser-
stein GAN). Some new methods are shown to have better results
in batch effect correction; for example, based on biological prior
knowledge from the annotated datasets learned by SciBet, SSBER
can remove batch effect in a large RNA sequencing data set
(Zhang and Wang, 2021). It is suggested that before the
integration of single-cell transcriptomic data, multiple methods
should be tested first based on the actual situation of the data,
and then the most appropriate batch effect removal method
should be selected. For example, Jinmiao Chen group and Charles
Wang group conducted a benchmark in 2020 and 2021 for most
of the first three methods mentioned in this review 2.2,
respectively, they proved that Harmony and Seurat V3 achieve
good batch effect correction results in most cases, which is in line
with the fact that these two methods are still widely used today,
but there is still a lack of good indicators for deep learning
methods (Chen et al., 2021a; Tran et al., 2020).

(3) Imputation
Large numbers of 0 values will be introduced during

sequencing (probably over >90% zero values in the high-
throughput large-scale 10x Genomic sequencing data) (Stegle
et al., 2015; Talwar et al., 2018). It will interfere with the
analysis of downstream biological differences, and therefore, the
missing data values in the original gene expression matrix must
be conducted imputation, while effectively distinguishing be-
tween the technical noise null value and the biological null
value.

The gene/cell separated method is mostly applied in the early
imputation which considers separately the cell similarity (MAGIC
(van Dijk et al., 2018), Sclmpute (Li and Li, 2018), VIPER (Chen
and Zhou, 2018), RESCUE (Tracy et al., 2019), scRMD (Chen et
al., 2020a), scRoc (Ran et al., 2020)) or gene-to-gene relation-
ship (SAVER (Huang et al., 2018a), SAVER-X (Wang et al.,
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2019a), G253 (Wu et al., 2021e), DCA (Eraslan et al., 2019),
DeepImpute (Arisdakessian et al., 2019)). Overall, these methods
lack consideration for the data set as a whole and can easily lead
to excessive imputation or introducing errors (Zhang et al.,
2019d). The comprehensive method comprehensively considers
the connection of cells and genes with each other: CMF-Impute
and netNMF-sc are the earliest methods to effectively utilize the
association between cells and genes for imputation (Elyanow et
al., 2020; Xu et al., 2020a). scIGANs processes the gene
expression matrix by a specific GAN model, using generated
cells training GANs model to impute the dropout (Xu et al.,
2020b). In recent years, new methods are still being proposed to
better solve the impact of technical noise on the data outside of
dropout and to achieve a better differentiation of biological zero
values. AutoClass (Li et al., 2022c) achieves processing without
supervision, while the ALRA method mainly aims at the
biological zero values (Linderman et al., 2022). scMOO makes
a fundamental change to use the latent structure of the data to
learn deep associations in cell similarity vertical structure and
total low-rank structure, thus achieving a better imputation
effect than a single gene expression matrix as an input, but it also
puts more memory requirements (Jin et al., 2022a). sc-PHENIX
utilizes the PCA-UMAP initialization method to achieve a
nonlinear interpolation of the gene expression (Padron-Manrique
et al., 2022). At present, there is no definite conclusion on which
imputation can achieve the best effect. Due to the data set itself,
the purpose of downstream analysis will have different choices,
but there is no doubt that the best imputation method will be able
to effectively distinguish between technical noise zero value and
biological zero value with lower calculation requirements (Jiang
et al., 2022a; Wen et al., 2022).

(4) Feature selection
In order to reduce data dimension to enhance computational

analysis efficiency, reduce technical noise interference and the
risk of model over-fitting, we often choose feature selection
strategy to select highly variable genes in different cells, instead
whole data set genes as subsequent analysis, such as cluster
(Brennecke et al., 2013; Jackson and Vogel, 2022; Svensson et
al., 2017).

In bulk RNA-seq analysis, methods for finding differential
genes generally include fold change (FC) based method,
statistical-tests-based method, and FC-statistical tests method,
the last one has the best screening results and credibility
obviously (Chung and Storey, 2015).

Early single-cell feature selection approaches lack a correction
between the mean expression and variances resulting in an
excessive proportion of the highly expressed gene in the results
(Brennecke et al., 2013). EDGE uses an ensemble learning
method of massive weak learners to learn inter-cellular similarity
probabilities, significant contributions based on information
entropy are extracted as the highly variable genes (Sun et al.,
2020c). Similarly, SAIC achieves an optimal cell cluster
separation based on Iterative Clustering final output (Yang et
al., 2017). Recently, some new feature extraction strategies have
been proposed and proved for their stability and effectiveness, but
the authoritative verification of the performance between them is
still lacking: including gene expression distribution matrix-based
method SCMER (Liang et al., 2021b), RgCop (Lall et al., 2021),
scPNMF (Song et al., 2021a), SIEVE (Zhang et al., 2021e);
entropy-based method IEntropy (Li et al., 2022g), infohet (Casey
et al., 2023); comprehensively considered cluster-based method

Triku (Ascensión et al., 2022), FEAST (Su et al., 2021), etc. Since
the vast majority of the above methods ignore the integrity of
gene dependency, comprehensive methods are proposed, such as
Triku using a k-nearest neighbor graph method to comprehen-
sively explore and classify gene expression patterns, achieve
screening for more biologically meaningful feature genes without
bias; FEAST ranks the feature by f-test on consensus cluster and
extracts HVG based on feature evaluation algorithm (Wang et al.,
2022c).

A few other methods use features other than highly variable
genes to represent the data set, for example, the scVEGs and
scSensitiveGeneDefine methods, using high coefficients of varia-
tion (CV) as a feature extraction; the BASiCS method utilizes the
information of spike-in genes (Chen et al., 2016b; Chen et al.,
2021b). Overall, based on the perspective of accuracy, and
biological interpretability, the main goal of the current feature
selections is to effectively extract the HVG for an effective
downstream analysis of high-dimensional transcriptome data.

(5) Dimension reduction
As the single-cell transcriptome typically includes tens of

thousands or more genes, it is not conducive to extracting
effective information directly. In the actual analysis process, we
usually need to reduce the dimensionality of the original
sequencing data. Besides processing the high-dimensional
single-cell transcriptome sequencing data using the feature
selection method mentioned above, dimension reduction is also
an effective method, which can be classified as linear dimension
reduction (latent Dirichlet allocation (LDA)-based method, PCA-
based method) and nonlinear dimension reduction (t-SNE-based
method, UMAP-based method) according to the dimension
reduction strategy (Andrews and Hemberg, 2018; Becht et al.,
2019; Laurens and Hinton, 2008; Peres-Neto et al., 2005).

In linear dimension reduction, LDA and PCA are two widely
used algorithms, LDA distinguishes features from the aspect of
the largest classification, while PCA orthogonally extracts the
main components from the angle of the largest variance. Despite
the improved algorithms of JPCDA, and LDA-PLS, the dimension
reduction effect of the LDA model in single-cell transcriptome
data is still not optimal (Tang et al., 2014; Zhao et al., 2020).
PCA is another linear transformation, Seurat usually determines
the amount of the PCs numbers according to the inflection point
of the standard deviation-PC diagram or the proportion test result
P-value (the ScoreJackStraw function) of the PCs. Other variants
PCA based dimension reduction methods include the pcaReduce
(Žurauskienė and Yau, 2016), GLM-PCA (Townes et al., 2019),
RPCA (Gogolewski et al., 2019), tRPCA (Candès et al., 2011),
scPCA (Boileau et al., 2020), PCAone (Li et al., 2022l). GLM-PCA
extends the traditional PCA analysis to non-normal distributions,
directly handles the original matrix by introducing an exponen-
tial family likelihoods strategy to make the PCA free from
normalization restriction, and then ranks and extracts the gene
implementation using bias (Collins et al., 2002). ScPCA uses
contrastive PCA and sparse PCA to remove the technical noise
and the data, respectively, which further increases the stability of
the PCA (Abid et al., 2018; Zou et al., 2006). As most scRNA-seq
datasets are difficult to effectively represent by simple linear
dimension reduction, one first strategy for solving this is based on
a rapid PCA analysis approach. PCAone proposes a new fast
randomized singular value decomposition (RSVD) strategy,
which completes the analysis of 1.3 million mice brain cells
single-cell data within 35 min (Li et al., 2022l).
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Nonlinear dimensionality reduction is another solution, like
non-parametric dimension reduction methods t-SNE and UMAP,
both need to set the hyperparameters of clustering in advance;
and in classification effect, the former tends to discrete the
formation of cells in the data. In the case of the reasonable use of
parameters for specification, there is no significant difference
between UMAP and t-SNE, which means after using the same
method of information initialization, they can produce approx-
imate analytical efficiency while preserving the global structure
of the data set (Do and Canzar, 2021; Kobak and Linderman,
2021). Modified methods for t-SNE include net-SNE, qSNE, FIt-
SNE, and Joint t-SNE (Cho et al., 2018a; Linderman et al., 2019;
Wang et al., 2022b), while the improvement of the UMAP
mainly comes from the self-improvement of the method by the
Leland McInnes’ group (McInnes et al., 2018). To better visualize
the dimension reduction results of t-SNE or UMAP, Hyunghoon
Cho proposes the den-SNE/densMAP approaches for the tran-
scriptome variability information based on local radius depen-
dent optimization to iteratively optimize the function of
conventional t-SNE/UMAP; Stefan Canzar proposes the j-SNE/j-
UMAP to improve the multimodal omics data joint visualization
results to reduce misleading of visualization (Do and Canzar,
2021; Narayan et al., 2021).

(6) Clustering
In the analysis of single-cell transcriptome data, clustering is

performed to divide the cells into subgroups and we are therefore
able to characterize the different cell types in multicellular
organisms which helps us to accurately analyze different tissues
or developmental processes from the perspective of cell hetero-
geneity. The actual effect of clustering can be affected by the pre-
data processing steps like bath effect normalization, imputation,
dimension reduction, etc.

After feature gene selection and dimension reduction, the vast
majority of single cells are clustered based on distance. The
concept of the K-means clustering algorithm was used for
applications like SCUBA, SC3, and RaceID (Grün et al., 2015;
Kiselev et al., 2017; Macqueen, 1967; Marco et al., 2014). On
parameter selection improvement, SAIC iteratively optimizes
multiple initial centers K and P-value by the Davies-Bouldin
index to obtain the optimal solution; LAK applies a parameter
selection algorithm to datasets for automatic selection of
parameters (Davies and Bouldin, 1979; Hua et al., 2020; Yang
et al., 2017). In the operation of ultra-high-dimensional data,
LAK adds the Lasso penalty to make standardization and
mbkmeans achieves rapid clustering at the million-cell level
using mini-batch k-means (Hicks et al., 2021). SMSC applies a
spectral clustering method to improve the clustering perfor-
mance but loses some accuracy for ultra-high-dimensional data
(Qi et al., 2021). Another broad class of widely used distance
clustering methods depends on sharing the nearest neighbor
graphs structure and graph cluster, among the most widely used
are Louvain or Leiden (Blondel et al., 2008; Xu and Su, 2015).
The identification of rare cells needs to be improved in
combination with specific methods, such as dropClust using the
locality sensitive hashing workflow for screening the nearest
neighbor followed by Louvain cluster, it uses the exponential
decay function to retain more transcriptomic features of the rare
cells (Sinha et al., 2018). Other distance-based clustering
methods use different algorithm cores: SIMLR uses a Gaussian
kernels learning model to construct kernel matrix for the
potential C cell populations in the datasets while Conos proposes

a joint mutual nearest-neighbor (mNN) graph cluster to achieve
integrative analysis of multiple different single-cell transcriptome
samples (Barkas et al., 2019; Wang et al., 2017a). Density-based
clustering uses the closeness of the sample distribution for the
cluster, DBSCAN is the most classical algorithm (Ester et al.,
1996; Fukunaga and Hostetler, 1975). For single-cell sequen-
cing, densityCut and FlowGrid are designed based on this
principle (Ding et al., 2016; Fang and Ho, 2021). Hierarchical
clustering is a bottom-up clustering method that repeatedly
calculates cell-to-cell similarity for classification until the preset
number of clusters is completed without advance through
unsupervised learning (Guo et al., 2015). Subsequently, the
RCA cluster uses a conventional hierarchical clustering method
to cluster the cells mapped to global reference panel; HGC
constructs a hierarchical tree on the SNN graph (Li et al., 2017;
Zou et al., 2021). To solve the defects that the conventional
hierarchical clustering method hardly clusters a certain group of
cells and only allows the same set of signature genes for
clustering, K2Taxonomer uses the constrained k-means algo-
rithm to expand to sample groups, integration calculations are
performed recursively based on multiple genes sets to capture
subgroups (“taxonomy-like cells”) under various resolutions
(Reed and Monti, 2021). Mrtree applies hierarchical clustering’s
strategy to multiple partitions of flat cluster and constructed a
multi-resolution reconciled tree to use as cell clustering (Peng et
al., 2021a). Recently, Zelig and Kaplan (2020) propose a KMD
clustering method, which eliminates the hyperparameter K while
clustering through an average linkage hierarchical clustering
model, greatly reducing judgment errors caused by subjectivity.

The deep learning cluster method is a combination of the
machine learning method and the above single-cell transcrip-
tome clustering strategy, which can achieve more efficient
clustering results in the form of unsupervised, supervised, or
semi-supervised. These methods tend to learn a nonlinear
transformation, obtaining the best low-dimensional representa-
tion by mapping the original high-dimensional data into a
smaller latent space. Overall, this approach avoids the impact of
traditional clustering methods on the choice of pre-cluster data
processing methods. Unsupervised clustering methods include
ADClust, DESC, SAUCIE, and VAE-SNE, they usually do not
require the parameters such as a preset number of clusters to
complete the analytical processing of the data set in the way of
autonomous learning (Amodio et al., 2019; Graving and Couzin,
2020; Li et al., 2020c; Zeng et al., 2022c). Although the
unsupervised clustering method avoids parameters such as
manual input cluster number and extends to ultra-high-
dimensional cell clustering, sometimes using high-quality
annotated data sets or other prior knowledge auxiliary con-
straints for supervised or semi-supervised clustering can achieve
more accurate cell type classification and improve clustering
performance (Bai et al., 2021). Transfer learning based ItClust,
mutual supervised ZINB auto-encoder and graph neural network
(GNN)-based scDSC, soft K-means convolutional auto-encoder
based ScCAEs, Cramer-World distance max-mean penalty
Gaussian mixture auto-encoder based SeGMA, time series
clustering network based STCN are all widely used supervised
clustering (Gan et al., 2022; Hu et al., 2022a; Hu et al., 2020a;
Ma et al., 2021b; Smieja et al., 2021). Furthermore, Zhang group
(Yang et al., 2023b) have utilized hierarchical GAN to design
another widespread DL method IMDGC for single-cell transcrip-
tome data analysis to construct cellular embedding cluster in a
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generated manner.
For the special cases in the clustering, targeted purposes

clustering methods are designed as follows: GiniClust (Jiang et al.,
2016) (updated to GiniClust 3 (Dong and Yuan, 2020)),
MicroCellClust (Gerniers et al., 2021) for rare cell subpopulations
clustering; EDClust (Wei et al., 2022), ENCORE (Song et al.,
2021b) and MLG (Lu et al., 2021) for noise reduction and batch
effect removal; ClonoCluster (clonal origin information) (Rich-
man et al., 2023), IsoCell (alternative splicing information) (Liu
et al., 2023) clustering with additional information. Wu and
Yang evaluated the cluster methods from the perspective of the
effect of feature selection on cluster, they proved that more
representative feature selection enhances the level of cell
clustering, methods based on “cluster similarity” (most dis-
tance-based clustering methods mentioned in our review)
generally have a wide range of high clustering type performance;
however, high accuracy and high running speed need targeted
selection according to the actual data set (Su et al., 2021; Yu et
al., 2022). Double dipping presents a significant issue wherein
the same expression data are used both in cell clustering and
differential expression genes, resulting in an excessively high
false discovery rate (FDR) of DE genes when the cell cluster is
incorrect. For example, if only one specific cell cluster is present,
no gene should be considered as differential genes. To address this
problem systematically, ClusterDE adopts a cluster contrast
learning strategy for post-clustering DE testing. It demonstrates
better FDR control across different threshold ranges compared
with the truncated normal (TN) test and the Countsplit method
(Song et al., 2023a).

(7) Cell typing annotation
Cell typing annotation refers to the usage of specific informa-

tion to annotate cells or cell subsets in single-cell sequencing
dataset, which is the basis for subsequent biological analysis. The
most commonly used strategy is unsupervised clustering of cells
followed by annotation based on the marker genes such as
scCATCH and SCSA (Cao et al., 2020b; Shao et al., 2020a).
However, it is difficult to treat complex high-dimensional datasets
(Franzén et al., 2019; Luecken and Theis, 2019; Zhang et al.,
2019c). Currently, multiple methods to automatically cell typing
have been developed and can be roughly divided into two
categories, i.e., reference-dependent and reference-free annota-
tion methods.

Reference-dependent annotation methods require users to
provide pre-annotated high-quality single-cell transcriptome
datasets or prior knowledge from the PanglaoDB database,
ScType database, etc. for alignment (Ianevski et al., 2022).
According to the different principles of the method, it can be
divided into hierarchy-tree-based methods (CHETAH (de Kanter
et al., 2019), Garnett (Pliner et al., 2019), HieRFIT (Kaymaz et
al., 2021), scHPL (Michielsen et al., 2021), scMRMA (Li et al.,
2022e)), similarity-based methods (SingleR (Aran et al., 2019),
scmap (Kiselev et al., 2018), deCS (Pei et al., 2023), scID (Boufea
et al., 2020), scMatch (Hou et al., 2019), Symphony (Kang et al.,
2021)), signature-gene-based methods (Cellassign (Zhang et al.,
2019a), Cell-ID (Cortal et al., 2021), scMAGIC (Zhang et al.,
2022g), SciBet (Li et al., 2020b)) and other DL methods. As an
early method, ACTINN is a deep learning approach using a 3
hidden layers neural network for annotation classification (Ma
and Pellegrini, 2020). SCPred then proposes a method using
machine-learning probability-based prediction based on the
unbiased feature selection from embeddings (Alquicira-Hernan-

dez et al., 2019). Other methods such as Seurat project query
cells in PCA space and train cell typing annotation through
weighted vote classifier; scSorter adopts a Gaussian mixture
model and GraphCS uses a virtual adversarial training (VAT) loss
modified GNN to expand to multi-species, large-scale datasets of
cellular annotation (Guo and Li, 2021; Zeng et al., 2022a).

Non-reference annotation approach uses a pre-trained deep
learning model and can directly perform cell classification using
the query dataset as input alone. scDeepSort uses single-cell atlas
from human cell landscape (HCL) and mouse cell atlas (MCA)
database as the input for the pre-trained weighted GNN models,
which is suitable for human and mouse cell annotation with
good results (Han et al., 2018b; Han et al., 2020; Shao et al.,
2021b). Similarly, Pollock is a pretrained human cancer
reference VAE model to classify the multimodal cells in the
cancer environment (Storrs et al., 2022). Although it is more
convenient to use, it is difficult to achieve a better cellular
annotation effect for significantly different query datasets, and it
is also difficult to expand the application due to the accuracy and
the number of pre-training reference datasets. There are also
some other cell annotation tools for targeted field research, for
example, DevKidCC (Wilson et al., 2022) for human kidney cell
annotation, ikarus (Dohmen et al., 2021) for the identification of
cancer and normal cells. Overall, the performance of the non-
reference annotation approach is restricted by the coverage and
accuracy of pretrained reference datasets.

Currently, to improve cell annotation tools to uniformly assign
cell types across large platforms and multicell patterns is the
mainstream of cellular annotation research directions, the latest
Cellar and ELeFHAnt methods have made some attempts in this
regard and achieved initial results (Hasanaj et al., 2022; Thorner
et al., 2021). Overall, similarity-based annotation methods are
computationally intensive, when applied to very large query and
reference data sets, they often make a trade-off between accuracy
and speed, it is therefore generally only suitable for cell
classification in smaller datasets; for larger-scale datasets, it is
recommended to use F-test feature selection or MLP classifier (Hu
et al., 2020a; Huang and Zhang, 2021; Ma et al., 2021c).
Moreover, the method of semi-supervised transfer learning, such
as Itclust, has good results in discovering new cell subtypes. In
recent years, new methods based on the above reference
annotation method classification have been continuously im-
proved, and deep learning models such as VAE have also been
applied in this field.

(8) Differential expression analysis (DEGs)
Statistical tests are commonly used in the differential gene

analysis of Bulk RNA-seq, similar to the section 2.4 HVG
Selection algorithm: P-values and log-fold changes are usually
used as important parameters. Statistical tests include t-test (two
sample based), Wilcoxon test, Kolmogorov Smirnov test (KS-test),
and Kruskal-Wallis test (KW-test), some of which are also widely
used in the test of single-cell transcriptome DEGs. Based on this,
the corresponding detection tools are developed: limma (Ritchie
et al., 2015), edgeR (Robinson et al., 2010), and DESeq2 (Love et
al., 2014). Both the limma and edgeR algorithms are proposed by
Smyth GK, the former is based on a normal or approximate
normal distribution model while the latter is based on an
overdispersed Poisson distribution model. DESeq2 is based on the
NB distribution model for hypothesis testing and uses the
empirical Bayes procedure for DEGs. Currently, limma has large
errors in RNA count analysis due to specific distribution model
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assumptions, although both edgeR and DESeq2 utilize the Bayes
model to normalize over-dispersion, the latter has better analysis
results as promoting the screening of CPM threshold through the
average value of data set reads and outlier detection.

Single-cell transcriptome DEGs can be roughly divided into
early parametric tests on zero-value, non-parametric tests, and
other methods according to time and analytical methods. Since
there are vast zero numbers in the scRNA-seq data, most of the
early methods are based on this observation to make parameter
tests, such as Monocle (Trapnell et al., 2014), SCDE (Kharchenko
et al., 2014), MAST (Finak et al., 2015), scDD (Korthauer et al.,
2016), D3E (Delmans and Hemberg, 2016), TASC (Jia et al.,
2017), DEsingle (Miao et al., 2018), and HIPPO (Kim et al.,
2020b). The evaluation of some methods above shows that
although they generally achieve good results in the analysis of
single-cell datasets, there is no significant performance improve-
ment over the DEA method for bulk data (Soneson and Robinson,
2018). It is possible that the best distribution model is not used
for different datasets, and thus one alternative solution is to
consider non-parametric DEA methods.

Non-parametric test or distribution-free test does not need to
make prior assumptions about the data distribution form and it is
therefore applicable to the analysis of multiple datasets, common
methods are Swish (Zhu et al., 2019a), IDEAS (Zhang et al.,
2022d), ccdf (Gauthier et al., 2021), distinct (Tiberi et al., 2022).
Swish evaluates transcript level by Salmon Gibbs and then the FC
value is calculated by the Mann-Whitney Wilcoxon test. IDEAS is
a pseudo F-statistic test using Jensen-Shannon divergence (JSD)
or Wasserstein distance (Was) for gene different expression
measurement, the P value is generated by PERMANOVA based
distance tester kernel based regression. Ccdf is a conditional
independence test relying on the conditional cumulative
distribution function, the DEGs is predicted by a multiple
regressions model. Distinct proposes a hierarchical non-para-
metric permutation method, the total distance of empirical
cumulative distribution function (ECDF) is used for DEGs
identification. Alternative methods include deep learning strate-
gies MRFscRNAseq (Li et al., 2021a), pseudotime inference based
PseudotimeDE (Song and Li, 2021), non pre-cluster based
singleCellHaystack (Vandenbon and Diez, 2020), multiple scores
based MarcoPolo (Kim et al., 2022). It is suggested that different
single-cell transcriptomic datasets should employ data-specific DE
genes detection strategies for optimal DEGs analysis, based on the
scCODE workflow, the most optimized DEGs method can be found
using indicators involving CDO (DE genes order) and AUCC (area
under concordance curve) (Zou et al., 2022). In addition, the
research method will have a specific research orientation under
different research backgrounds, for example, in dose-response
studies after administration DEGs analysis, LRT linear test, and
Bayesian multiple group test have better results than other
methods (Nault et al., 2022).

(9) Visualization
Single-cell transcriptome data analysis visualization refers to

the visual presentation of the above analysis results in the form of
graphs, ggplot2 is the most extensive R visualization tool and is
commonly used in R to greatly enhance drawing power
(Wickham, 2009). ARL is another R package that specifically
displays marker gene Association Plots and can display its
features in each cluster (Gralinska et al., 2022). Also, there are
other specific packages for marker gene visualization like
Complex Heatmap that are not described in detail here. HVG

visualization is usually presented in the form of volcano plot, by
default, the left and right part of the graph are the under-
represented and overrepresented genes, respectively, while the
middle is the constant gene. Enhanced Volcano is a specialized R
package used for drawing a volcano graph, and ggplot2 can also
be used to achieve better results by default. Cluster visualizations
are often presented in PCA plot, t-SNE plot and UMAP plot, but it
is noteworthy that the results of visualization are very deceptive,
since some small cell subpopulations may represent a large
number of cells shown in the UMAP figure. Improved methods
like den-SNE/densMAP and j-SNE/j-UMAP have been proposed to
solve these problems (Macqueen, 1967; Marco et al., 2014).
Furthermore, FastProject can output a 2D display of the
annotated cluster and PieParty can draw color maps for each
gene in the cluster 2D graph (DeTomaso and Yosef, 2016;
Kurtenbach et al., 2021).

Meanwhile, the interactive visualization of single-cell tran-
scriptome data is currently a hot field; software such as Single
Cell Explorer can achieve interactive visualization to certain
extent, but it is still necessary to increase the interaction freedom
to provide a more comprehensive 3D presentation of single-cell
transcriptome data (Cakir et al., 2020; Feng et al., 2019). To this
end, CellexalVR uses VR theory for interaction visualization;
CellView is a Web-based tool, including the Explore tab, Co-
expression tab, Subcluster-analysis tab modules for different uses;
Cellxgene VIP is a cellxgene framework-based plugin and extends
to the interactive visualization of ST data based on combination
of multiple modules (Bolisetty et al., 2017; Legetth et al., 2021; Li
et al., 2022f).

(10) Single-cell simulators
As single-cell transcriptome methods continue to expand, the

pressing challenge lies in the benchmarking, with the key issue
being the requirement for stable and reliable data, as direct
sequencing of single-cell transcriptome may lack ground truth.
The realistic single-cell simulator data provided a known truth
for benchmarking, allowing training with real data while
matching the characteristics of actual data. Additionally,
simulated data provide greater flexibility than real data, enabling
analysts to adjust parameters like dropout rate based on specific
testing methodologies.

Splatter is a two-step simulator framework that initially
simulates estimated parameters from real data and then
incorporates additional parameters from users (Zappia et al.,
2017). Its six pre-designed pipeline module interfaces ensure the
repeatability of data generation. Recent updates have focused on
specialization and generalization. In the specialization domain,
splaPop generates population-scale data with genetic effects
(quantitative trait loci), while dyngen simulates dynamic cellular
processes like developmental trajectories (Azodi et al., 2021;
Cannoodt et al., 2021). In the generalization field, Li’s team
introduced the six concepts of an ideal simulator including
authenticity, preservation of genes, capture of gene correlations,
robustness, parameter tunability, and efficiency (Song et al.,
2023b; Sun et al., 2021). Subsequently, scDesign2 is proposed to
meet all six properties (Sun et al., 2021), followed by
scDesign3, addressing the gap in single-cell omics statistical
simulation (Song et al., 2023b). The increased accuracy and
transparency of the simulator enhance benchmarking between
different single-cell data processing methods, guiding the
selection of the most appropriate approach for specific data and
licensing needs.
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Extended downstream analysis
(1) Pseudotime
In order to more truly restore the real process in the organism,

integration of multiple transcriptome data using pseudo-timing
analysis is needed to reconstruct cellular developmental trajec-
tories by inferring cell information at different time points,
including state, distribution, number and gene expression (Bar-
Joseph et al., 2012; Bendall et al., 2014; Ding et al., 2022). This
dynamic analysis of transcriptome features is known as
Pseudotime analysis (Figure 4E). Based on whether it depends
on gene expression, pseudotime analysis methods can be divided
into gene (exons) expression-based method and RNA-velocity-
based method.

Pseudotime analysis based on gene expression level was first
proposed, it usually clustering methods such as dimensional
reduction is used to construct multi-branching graphs model in a
low-dimensional space to mimic the developmental trajectory of
cells: minimal spanning tree (MST) based method monocle
(Trapnell et al., 2014), monocle 2 (Qiu et al., 2017), TSCAN (Ji
and Ji, 2016); PAGA based method PAGA (Wolf et al., 2019),
monocle 3 (Cao et al., 2019); other graph architectures method
Wishbone (Setty et al., 2016), p-Creode (Herring et al., 2018) are
all for this purpose. MST is a model that connects all points in a 2-
dimensional plane and has the lowest total connection weight, it
was used first to solve the traveling salesman problem, Qiu et al.
(2011) applied MST model constructed with Boruvka’s algo-
rithm to analyze cellular hierarchy in 2011. Monocle maps cells
into a high-dimensional Euclidean space and reduces dimension
using ICA, Monocle 2 updates the monocle and uses the reversed
graph embedding (RGE) strategy to construct cell path; cells are
subsequently distributed to the spanning tree constructed using
centroids. PAGA (partition-based graph abstraction) preserves
the global topology structure of the dataset, by statistical
connectivity measures of the neighborhood graph weights
(KNN graph by default), PAGA graphs at multiple resolutions
are produced to conduct pseudotime analysis based on an
expanded diffusion pseudotime (DPT) method. Monocle 3
combines the advantages of monocle 2 and PAGA to form
multiple PAGA graphs on the UMAP space, then uses the
SimplePPT algorithm to learn the principal graph and then
constrained by other PAGA graphs, the final derived cell
developmental trajectories can be adapted to large datasets with
compositional complexity. Overall, PAGA and monocle 3
comprehensively consider the computational speed, accuracy,
and robustness, and are currently the best methods for the
pseudotiming analysis of the single-cell transcriptome. In
addition to the graph method, other gene expression based
methods include CSHMMs which use HMM model to calculate
the distance between each cell to root cell and then complete cell
trajectory assignments iteratively; SCUBA which uses a bifurca-
tion analysis model; SLICE which proposes a scEntropy directed
model as highly differentiated cells have minimized scEntropy
(Guo et al., 2017; Lin and Bar-Joseph, 2019; Marco et al., 2014).

The RNA-velocity-based method relies on the content of RNA
velocity, which is proposed first by Peter V. Kharchenko group
(La Manno et al., 2018) in 2018, they think that the ratio of
unspliced/spliced mRNA can be used in infer transcriptional
dynamics as cells with a higher proportion of uncleaved mRNA
are younger (as a later cell differentiation state). At the same
time, they also propose a dedicated analysis software, velocyto
(available through the R package of the velocyto.R) as a steady-

state model to quantify RNA velocity for developmental
trajectory analysis. scVelo is another analysis tool designed
specifically for RNA velocity, it uses the likelihood-based
dynamical model to solve the cell trajectory inference with
steady-state mRNA levels and situation violates the central
assumption of the common splicing rate (Bergen et al., 2020).
But there is still room for methodological improvement in
velocity projection methods: constant degradation and nuclear
export assumptions still need to be proved. This also provides a
direction for the subsequent RNA velocity based method (Bergen
et al., 2021). Methods concerning deep learning have been
widely used in the modeling prediction of RNA velocity to further
enhance processing power for large-complex datasets, like the
Bayesian hierarchical model BRIE2 (Huang and Sanguinetti,
2021); velocity auto-encoder model based VeloAE (Qiao and
Huang, 2021); variational auto-encoder model DeepCycle (Riba
et al., 2022).

(2) Cell-cell interaction
Cell-cell interaction (CCI) is an important feature for main-

taining the normal physiological function in multicellular
organisms, which determines the fate of cells exploring the
mechanism of disease occurrence, exploring the genetic variation
process and other regulatory processes (Shao et al., 2020b;
Singer, 1992). Cell interaction network intuitively embodies the
interaction relationship between cells (Figure 4F).

Direct CCI based on the neighborhood structure refers to the
extraction and analysis of the CCI with a possible direct contact,
using the physical distance between the cells. ProximID method
completes the physical cellular network construction on eligible
cells with a predetermined interaction distance (Euclidean
distance) (Boisset et al., 2018). Neighbor-seq identifies the cell
types using a random forest classifier, CCI network is constructed
by the igraph method using enrichment scores calculation score
(Csardi and Nepusz, 2006; Ghaddar and De, 2022). Due to the
great limitations of this analysis method, it is not currently used
alone. This KNN connected graph is commonly used as one of the
inputs to the CCI for deep learning, and its physical distance has
also become an important hypothesis in single-cell CCI studies
(two adjacent cells physically in direct contact are more likely to
have some form of interaction than two random cells) for global
CCI analysis.

The complete process of CCI relationships for indirect contact
should include ligands, receptors, signaling proteins, transcrip-
tional factors (TFs), and target genes. Common indirect CCI
methods mainly use a priori ligand-receptor pairs databases (like
the CellTalkDB database which integrates information from
validated 3,398 human LR pairs and 2,033 mouse LR pairs
(Shao et al., 2021a)), a cell-cell connection matrix is made in
which each value represents the co-expression level of LR pairs.
Then a cell connection graph is constructed for CCI analysis, the
main analytical method packages include single-cell CCI
inference method SoptSC (Wang et al., 2019d), Scriabi (Wilk et
al., 2024); LR pairs based cluster CCI method NATMI (Hou et al.,
2020), SingleCellSignalR (Cabello-Aguilar et al., 2020), scCros-
sTalk (Shao et al., 2024), CellPhoneDB (Efremova et al., 2020),
Nichenet (Browaeys et al., 2020), CellChat (Jin et al., 2021),
CellCall (Zhang et al., 2021d), ICELLNET (Noël et al., 2021),
scMLnet (Cheng et al., 2021), CytoTalk (Hu et al., 2021b),
Tensor-cell2cell (Armingol et al., 2022), LRLoop (Xin et al.,
2022); other information based clusters CCI method InterCellDB
(Jin et al., 2022b), EBOCOST (Zheng et al., 2022b). The LR pair-
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based approach constructs the database using the literature
database curated or previous self-validated LR pairs: NATMI uses
the connectomeDB2020 database by default (1,751 of 2,293 LR
pairs were from the validated draft map by author in 2015) to
construct weighted directed multi-edge networks (Ramilowski et
al., 2015). CellPhoneDB proposes a certain SQLite database to
retain specific subunit architecture of LR pairs, mean expression
threshold is used to determine the interacting cells, and a
geometric sketching subsample framework is used for enhanced
power to large datasets and excluded noise. Similarly, ICELLNET
takes use of the multi-subunit structure of ligands with receptors
for heteromeric complexes. NicheNet uses model-based para-
meter optimization on an LR prior model to optimize CCI intensity
by adding intracellular signaling information (target gene). It
overcomes the problem that the above methods directly use the
receptor gene expression level to represent the amount of
receptor protein in the cells and combine the downstream
signaling pathway with GRN to improve CCI analysis. Therefore,
in the analysis of the single-cell transcriptome CCI, the
CellPhoneDB and NicheNet are usually used together to achieve
the best analysis results (Dimitrov et al., 2022).

The latest methods of single-cell CCI adopt the strategy of DL
and improve the application performance to some extent.
DeepLinc uses a VGAE model to reconstruct full range
intercellular CCI network (Li and Yang, 2022). TraSig is a
continuous-state Hidden Markov Model that uses pseudotime
ordering to calculate dynamic interaction scores for CCI inference
(Li et al., 2022a). In addition, as now spatially resolved
transcriptomics (ST) provides the gene information with crucial
spatial information, the inference of spatial cell-cell communica-
tions remains a great challenge. SpaOTsc can reconstruct the
spatial properties of scRNA-seq data and build the CCI network
relying on a structured optimal transport method (Cang and Nie,
2020). Giotto uses a cell-cell proximity graph to infer the
signaling pathways (Dries et al., 2021b). However, both SpaOTsc
and Giotto hardly resolve the spot-based ST data. Recently, Fan’s
lab (Shao et al., 2022a) present SpaTalk which uses a knowledge
graph and graph network to construct a ligand-receptor-target
network between spatially adjacent cells for both single-cell and
spot-based ST data.

(3) Pathway enrichment analysis
Gene pathway enrichment analysis refers to using the gene of

interest as a foreground gene and known specific database
associations to establish gene-biological process links which are
used to explain the physiological functions of differentially
expressed genes, upstream and downstream pathways, etc
(Creixell et al., 2015). Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) are the first batch proposed
databases used as an enrichment analysis (Ashburner et al.,
2000; Ogata et al., 1999). Gene set enrichment analysis (GSEA)
is another widely used method calculating the enrichment score
to determine whether gene set S will occur in both sides of ranker
DEGs List L as well as the significance test value (Subramanian et
al., 2005). All pathways in Ingenuity Pathway Analysis (IPA)
software have been experimentally verified and it can predict the
changing trend of the entire pathway when activated compared
with other analysis. Other common database pathway enrich-
ment methods also include over-representation analysis (ORA)
(Khatri et al., 2012), network topology-based analysis (NTA)
(Wang et al., 2013), Reactome gene sets (Fabregat et al., 2018),
CORUM complexes (Ruepp et al., 2010). The difference in the

source pathways and enrichment means of the reference datasets
will directly affect the pathway enrichment results. Web-based
online analysis tools with different integrated databases have
been proposed to easier analysis (Wang et al., 2017b; Zhang et
al., 2005). Metascape involves the transcriptome databases
(KEGG, GO, CORUM, TRRUST, etc.) and protein-protein interac-
tions databases (STRING, BioGrid, OmniPath, etc.); there are a
total of 25 databases that can be used for genetic and proteomic
enrichment analysis in 8 species including human and mouse
(Zhou et al., 2019b).

In conclusion, although we have enumerated the most
common parts of single-cell transcriptome downstream analysis
(Tables S3 and S4 in Supporting Information), there are still
many methods not covered including gene regulatory network
analysis, immune analysis, cell cycle assignment, gene variants
exploration, alternative splicing analysis. Overall, single-cell
transcriptome analysis methods are diverse and still evolving,
the starting point and the ultimate goal of all the analysis
methods is to use the accurate mining of the biological
information from the single-cell transcriptome sequencing data
for biological explanation.

Applications of scRNA-seq

ScRNA-seq has become a potent instrument, empowering
scientists to delve into the intricate realm of individual cells
and unveil their distinct molecular characteristics. Leveraging
scRNA-seq, investigators now have the capability to delve into
cellular diversity, study developmental biology, scrutinize disease
progression, and advance drug development with unparalleled
precision. This methodology has unlocked fresh possibilities for
revealing novel biomarkers, pinpointing therapeutic targets, and
forging pathways toward personalized medicine. In this segment,
we illuminate and deliberate on several noteworthy applications
of scRNA-seq in the realms of biomedical and clinical research.

Application of scRNA-seq in embryonic, tissue, and organ
development research

(1) Embryonic development research
ScRNA-seq proves to be pivotal in embryonic development,

particularly in the identification and categorization of distinct cell
types and lineages.

In a research by Cao et al. (2019), 38 primary cell types and
655 subtypes were identified by scRNA-seq analysis of
2,072,011 single cells from mouse embryos. This comprehensive
information sheds light on the developmental trajectories of
different cell types during organogenesis in mammalians,
culminating in the creation of a developmental-specific trajectory
map for skeletal muscle cells. This research significantly
contributes to advancing our knowledge in the realm of
mammalian developmental biology. Moreover, researchers
leverage scRNA-seq to reconstruct developmental trajectories,
unraveling the regulatory networks that govern cell fate
decisions through the analysis of gene expression at different
developmental stages (Wu et al., 2024). Scialdone et al.’s
(Scialdone et al., 2016) study, which analysed 1,205 mouse
cells from the early gastrula formation stage, used single-cell
transcriptome analysis, created gene expression profiles for
healthy mammals during the early developmental stage, and
investigated the function of the important hematopoietic
transcription factor Tal1, serves as an instructive example.
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Nestorowa et al. (2016) harnessed the potential of scRNA-seq to
profile over 1,600 single hematopoietic stem and progenitor cells,
unveiling the trajectories of hematopoietic stem cells and
shedding light on the molecular events orchestrating blood cell
differentiation. Additionally, scRNA-seq also plays an essential
role in identifying pivotal regulatory factors and signaling
pathways dictating cell fate decisions during embryogenesis. In
a study by Lescroart et al. (2018), Mesp1 emerged as a crucial
transcription factor involved in the specification of cardiac
progenitor cells during mouse heart development, revealed
through scRNA-seq. By integrating single-cell transcriptomic
analyses of human mesoderm cells derived from embryonic stem
cells and embryos, Wen et al. (2024) identified and defined the
molecular characteristics of human hematopoietic mesoderm
cells biased towards hematopoietic lineages. Cui et al. (2019)
used scRNA-seq to explore the gene expression landscapes of
almost 4,000 cardiac cells from human embryos. They identified
four main cell types and uncovered important signalling path-
ways that may be essential for the maturation and differentiation
of several cell types. This wealth of information lays the
foundation for a deeper understanding of the mechanisms
governing in vivo human cardiac development.

(2) Tissue and organ development research
Apart from studying embryonic cells, scRNA-seq is a useful

method to describe the evolution of certain cell populations in
organs or tissues, providing information about important
transitions in the development of animal tissues and organs
(Mu et al., 2019; Paik et al., 2020). Subsequently, we will delve
into the applications of scRNA-seq in tissue and organ research,
emphasizing its significance in unveiling cellular diversity,
identifying rare cell populations, and comprehending disease
mechanisms.

In 2016, the Human Cell Atlas (HCA) project was initiated as a
large-scale international collaboration with the goal of mapping
and characterizing all distinct cell types in the human body. The
primary objectives include understanding the spatial organiza-
tion and functional relationships of these cell types, advancing
our knowledge of human biology, and ultimately enhancing the
diagnosis and treatment of diseases. Since its inception,
numerous scRNA-seq analyses have contributed to depicting
the landscapes of human cells. Using microwell-seq, Han et al.
(2020) profiled 702,968 single cells from seven different types of
cell culture and 60 human tissue types, revealing cell hetero-
geneity in a variety of human tissues that had not been known
before. For example, their examination of human kidney tissues
in the fetal and adult stages identified a new intercalated cell-
tran-principal cell type in the adult kidney and previously
unidentified kinds of S-shaped body cells in the fetal kidney. This
construction of a human cell landscape at the single-cell level
serves as a valuable resource for advancing our understanding of
human biology. Similarly, studies by Jones et al. (2022b), Eraslan
et al. (2022), Domínguez Conde et al. (2022), as well as Suo et al.
(2022), reported pan-tissue single-cell transcriptome atlases
encompassing more than 500 different cell types and over a
million cells from 68 different donors in more than 30 human
tissues. These researches identified unusual cell types, tissue-
agnostic traits, tissue-specific cell states, and even disease-
associated cell types through cross-tissue comparisons of cell
types and their transcriptional properties. These pan-tissue
investigations mark a significant milestone in constructing a
comprehensive human single-cell atlas.

In addition to constructing organ atlases, scRNA-seq has
proven instrumental in unveiling cell type-specific gene expres-
sion changes associated with various diseases, offering crucial
insights into disease mechanisms. Wilson et al. (2019) performed
unbiased snRNA-seq on cryopreserved human diabetic kidney
samples. They found that key inflammatory markers TNFRSF21
and ILR1 were significantly increased in infiltrating immune
cells, potentially serving as biomarkers for disease progression or
targets for early intervention in diabetic kidney disease. In
another study, Koenig et al. (2022) used a combination of
snRNA-seq and scRNA-seq to examine cardiac tissue from 27
healthy donors and 18 people with dilated cardiomyopathy. They
deciphered transcriptional programs distinct to each major
cardiac cell type, found gene expression profiles linked with the
condition, and illuminated the molecular mechanisms behind
dilated cardiomyopathy.

In summary, scRNA-seq has played a pivotal role in
constructing comprehensive atlases of human tissues and
organs. It has unveiled intricate gene expression networks and
developmental trajectories, offering insights into potential factors
and targets implicated in the pathogenesis of individual organs or
tissues. This wealth of information has the potential to unravel
disease mechanisms and provides a solid foundation for
advancing disease treatment strategies.

Application of scRNA-seq in tumor biology research
ScRNA-seq, by enabling the comprehensive analysis of the entire
transcriptome at a single-cell resolution, has transformed our
comprehension of tumor biology. It has been instrumental in
unveiling the heterogeneity within tumors, identifying distinct
subclones, characterizing interactions between tumor and
immune cells, revealing signaling pathways associated with
tumors, and predicting responses and resistance to drugs. This
technology allows for the creation of detailed cell maps, the
discovery of novel biomarkers, and the identification of ther-
apeutic targets. As scRNA-seq technology continues to advance,
it holds significant promise for enhancing patient outcomes and
expediting the development of personalized treatments.

(1) Tumor heterogeneity
Tumors exhibit a diverse array of cell types, each characterized

by unique gene expression profiles and functional attributes.
Although traditional bulk RNA sequencing is very informative, it
provides an averaged gene expression profile of the entire tumor,
masking the internal cellular heterogeneity. ScRNA-seq technol-
ogy is capable of identifying and characterizing distinct cell
populations within tumors, offering a nuanced perspective of the
tumor ecosystem.

For instance, Hu et al. (2020b) employed scRNA-seq to identify
six subtypes of fallopian tube epithelium cells in healthy human
fallopian tube tissues, as well as serous ovarian cancer (SOC)
subgroups linked to patient prognosis, and reveal intra-tumoral
heterogeneity in SOC. Another study by Liang et al. (2021a)
analyzed scRNA-seq data from eight high-grade SOC cases and
identified 20 tissue-specific cell clusters. By taking use of the
heterogeneity of ovarian cancer immune cells, the study
developed a two-gene signature prognostic stratification ap-
proach (CXCL13 and IL26) to precisely assess prognostic risk.
Tumor heterogeneity poses a significant challenge to the precise
diagnosis and treatment of gastric adenocarcinoma (GA). Zhang
et al. (2021b) analysed 27,677 cells from nine GA samples and
three non-tumor samples using unbiased scRNA-seq technology.
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This investigation revealed differentiation and cellular hetero-
geneity both within and across GA patients, providing insight
into the molecular makeup of an uncommon chief cell-
predominant GA type (GA-FG-CCP). The authors proposed a
biomarker panel for distinguishing between benign and malig-
nant epithelium based on their findings. Zhong et al. (2022)
utilized scRNA-seq to explore cellular heterogeneity and regular
networks in 9 patients with multiple myeloma. Through
analysis, they discovered unique molecules, networks, and
crosstalk pairs in different stages of the disease, offering valuable
insights into its prognosis and treatment. Therefore, by unravel-
ing tumor heterogeneity, scRNA-seq aids researchers in compre-
hending the various cell types present, their interactions, and
their contributions to tumor development, progression, and
responses to treatment.

(2) Tumor microenvironment
The tumor microenvironment (TME) constitutes an intricate

ecosystem comprising diverse cell types, including cancer cells,
immune cells, stromal cells, and vascular cells. It holds a pivotal
role in tumor development, progression, and responses to
therapy. ScRNA-seq can unravel the complexity of TME by
identifying and classifying distinct cell populations based on their
gene expression profiles.

Through the profiling of individual cell transcriptomes, scRNA-
seq allows the identification of rare cell populations within the
TME, such as tumor-infiltrating lymphocytes (TILs), cancer-
associated fibroblasts (CAFs), and myeloid-derived suppressor
cells (MDSCs). An exemplary study conducted by a research
group from China utilized scRNA-seq to analyze the transcrip-
tomes of 47,304 cells from nine patients with gastric cancer. The
study unveiled multiple immune cell subsets, including regula-
tory T cells, CD4+ T cells, CD8+ T cells, natural killer cells, and
innate lymphocyte cells (Li et al., 2022k). Notably, the study
found an enrichment of regulatory T cells in gastric tumor
tissues, marked by increased expression of immune suppression-
related genes like DUSP4, IL2RA, TNFRSF4, LAYN, and LGALS1,
indicating an immunosuppressive microenvironment in gastric
tumors.

Understanding TME cellular heterogeneity and gene expres-
sion may lead to the creation of novel targeted cancer
therapeutics as well as cutting-edge early diagnostics. Significant
heterogeneity in the infiltrating T cell population was found in a
study by Savas et al., which involved the analysis of 6,311
intratumoral T cells extracted from 123 breast cancer patients
using scRNA-seq. According to the study, individuals with breast
cancer who had a high TIL count had CD8+ T cells that had
characteristics of tissue-resident memory T (TRM) cell develop-
ment. Moreover, these CD8+ TRM cells exhibited significant
quantities of cytotoxic effector proteins (PRF1 and GZMB) and
immunological checkpoint molecules (PDCD1 and CTLA4)
(Savas et al., 2018). Moreover, in early-stage triple-negative
breast cancer, the gene profiles found inside the CD8+ TRM
cluster were significantly linked to favorable patient survival.
This highlights the ability of scRNA-seq to detect small
subpopulations of TILs that are associated with immune
surveillance or immunosuppression. These various immune cell
types may be used as therapeutic targets or prognostic variables
for breast cancer.

(3) Therapeutic selection and monitoring
The development of tailored treatment plans is a significant use

of scRNA-seq in cancer research. The population of cells that

make up tumors is diverse and includes endothelial, stromal,
immunological, and malignant cells. These cell types can all play
a role in treatment resistance, metastasis, and tumor formation.
By analyzing the gene expression profiles of individual cells
within a tumor, scRNA-seq can help identify specific cell
populations that play key roles in tumor progression and therapy
resistance.

In a study conducted by Tirosh et al. (2016), scRNA-seq was
employed to analyze the heterogeneity of melanoma tumors and
pinpoint distinct cell states linked to therapy resistance. The
investigation revealed a specific subpopulation of tumor cells
characterized by elevated AXL gene expression, which was
associated with resistance to targeted therapies. This discovery
paved the way for the development of combination therapies
targeting both the AXL pathway and the targeted therapy
pathway, resulting in improved treatment responses. Not every
patient responds to immune checkpoint inhibitors, such as anti-
PD-1 and anti-CTLA-4 antibodies, which have revolutionised
cancer treatment by increasing the immune system’s capacity to
identify and fight cancer cells. To unravel the underlying
resistance mechanisms and enhance treatment outcomes,
researchers at the Broad Institute of MIT and Harvard conducted
a study using scRNA-seq to analyze the gene expression profiles
of individual cells within tumor samples from 33 melanoma
patients (Jerby-Arnon et al., 2018). The scRNA-seq analysis
unveiled a distinct subset of cancer cells known as the T cell
exclusion program (TEX). These TEX cells actively suppressed the
recruitment and activation of T cells in the tumor microenviron-
ment, forming an immunosuppressive barrier that shielded
cancer cells from immune attack. The TEX program was
associated with resistance to immune checkpoint blockade
therapies and poor response to anti-PD-1 treatment and may
serve as a potential therapeutic target to overcome immune
resistance.

Application of scRNA-seq in immune system research
The immune system, which is made up of immune molecules,
immune cells, and immunological organs, is a crucial component
of the body’s internal environment. Its job is to identify and
eliminate antigenic foreign substances from the body (Akar-
Ghibril, 2022; See et al., 2018). The immune system may
produce autoantigenic reactions in the course of combating
infections, which can result in immunological disorders and
harm tissues or organs (Li et al., 2022m; Suo et al., 2022). The
complexity and diversity of immune illness mechanisms make
the timely identification of disease triggers essential for the
treatment of immunological diseases (Zhao et al., 2021b). As a
powerful technology, scRNA-seq can discover new cell subpo-
pulations, reveal the developmental lineage of immune cells, and
identify the regulatory programs of immune responses in
immune diseases, thereby further elucidating the pathogenesis
of immune diseases at the single-cell level and exploring new
therapeutic strategies to benefit more patients.

(1) Research on immune cell heterogeneity
ScRNA-seq can characterize individual cells within tissues and

organs and identify rare and previously unknown cell popula-
tions. In immune system diseases, this technique has unveiled
distinct immune cell subsets and their functional states.

He et al. (2023) analyzed 26,456 immune cells from old
zebrafish brains by scRNA-seq and revealed the crucial role of
microglia and T cells in the neurodegenerative process in aging.

26 SCIENCE CHINA Life Sciences Vol.68 No.1, 5–102 January 2025 https://doi.org/10.1007/s11427-023-2561-0

https://doi.org/10.1007/s11427-023-2561-0


A study from the USA analyzed the transcriptomes of approxi-
mately 276,000 single peripheral blood mononuclear cells
(PBMCs) from 33 children with systemic lupus erythematosus
(cSLE) and 11 matched healthy controls using scRNA-seq
(Nehar-Belaid et al., 2020). This investigation identified two
novel cell subpopulations (ISGhi T-SC4 and CD8+ T cells
expressing high levels of cytotoxic proteins) and revealed SLE-
restricted activated NK cells and ISGhi NK-SC associated with
disease severity. This comprehensive profiling of SLE hetero-
geneity at the single-cell level contributed to a deeper under-
standing of the cellular composition and functional diversity
within the immune system, shedding the underlying mechan-
isms driving disease progression. Zheng et al. (2022a) obtained
the single-cell landscape associated with lupus pathogenesis by
scRNA-seq. The study elucidated the heterogeneous character-
istics present in cutaneous lesions between discoid lupus
erythematosus (DLE) and SLE, contributing to a better identify
potential avenues for therapeutic intervention.

(2) Research on the mechanism of immune disease
ScRNA-seq technology empowers researchers to dissect the

intricate cellular composition of immune diseases, pinpoint
dysregulated pathways, and uncover novel cell types or subtypes
that may contribute to disease pathogenesis. The utilization of
scRNA-seq promises substantial progress in the diagnosis,
treatment, and management of immune diseases in the future.
Using 10x Genomics, Gaydosik et al. (2021) focused on 3,729
CD3+ lymphocytes from skin biopsies of 10 healthy donors and
27 patients with active systemic sclerosis (SSc). This study
revealed different tissue-resident and circulating T cell subpopu-
lations in both healthy and SSc skin and identified the cytokines
that contribute to inflammatory immune disorders. The findings
advance our understanding of the immunological mechanisms
underlying disease processes and hold potential for the develop-
ment of novel, tailored therapy approaches in SSc. Xu et al.
(2022) analyzed the pathogenic mechanism of vitiligo through
single-cell transcriptome technology, revealed the relationship
between skin fibroblasts and vitiligo, and further clarified the
location preference of vitiligo onset, which has important guiding
significance for the development of new therapeutic strategies for
the treatment of vitiligo.

Application of scRNA-seq in infectious diseases research
ScRNA-seq has revolutionized the field of infectious disease
research by enabling the study of host-pathogen interactions,
characterizing the host immune response, and investigating the
impact of infectious diseases on host tissues. With the use of this
technology, the complexity of infectious diseases has been
untangled at the single-cell level, revealing hitherto unexplored
insights into the variety and functional states of cellular
responses during infection.

A variety of diseases, including interstitial pneumonia with
consolidation, granulomatous lesions with non-necrotic or
caseous necrotic centres, and cavitary liquefied lesions, are
indicative of Mycobacterium TB infection, which results in
pulmonary tuberculosis (Hunter et al., 2014). Six tuberculosis
patients’ lung tissues were subjected to scRNA-seq by Wang et al.
(2023b) with the goal of investigating the heterogeneity and
intercellular interaction in regions with 18F-FDG avidity and
nearby uninvolved tissues. The scRNA-seq analysis identified a
total of 29 distinct cell subsets, encompassing both immune and
parenchymal cells, each characterized by specific marker genes.

The detailed characterization of these cell types and their
associated marker genes offers a comprehensive understanding
of the distinct immune and non-immune populations present in
tuberculosis-infected lungs. This information is crucial for
deciphering the complex interactions between these cells during
tuberculosis infection and may aid in identifying potential new
therapeutic targets. Zhao et al. (2023) employed scRNA-seq to
comprehensively analyze the gene expression profiles of immune
cells in draining lymph nodes responding to Y. pestis infection,
which may contribute to understanding of the plague pathogen-
esis during the early stage of infection. Chua et al. (2020) utilized
scRNA-seq on nasopharyngeal and bronchial samples from 19
patients with COVID-19 to identify molecular correlates of
disease severity. By better understanding the underlying
molecular pathways behind infectious diseases, researchers
may be able to design diagnostic tools, treatments, and
preventive measures that are more successful.

Application of scRNA-seq in drug discovery and development research
The drug discovery process is often hindered by inefficiencies due
to a limited understanding of human biology, including cellular
heterogeneity, disease mechanisms, drug responses, and ther-
apeutic targets. Since its inception in 2009, scRNA-seq
technology has come a long way and offers a promising solution
for drug development. This method can be integrated at different
stages of the drug discovery and development pipeline, as it can
capture individual cell whole-transcriptome profiles. During the
initial phases, scRNA-seq can assist in discovering novel cellular
and molecular targets. By deepening our understanding of
diseases through subtyping based on altered cell compositions
and states, scRNA-seq contributes to a more nuanced compre-
hension of pathological mechanisms. Furthermore, this techni-
que provides insight into the actions of compounds that are
particular to cell types, off-target effects, and heterogeneous
responses, all of which help in the process of choosing potential
new drugs. During clinical development, scRNA-seq plays a
pivotal role in identifying biomarkers for patient stratification. It
helps unravel drug mechanisms of action or resistance and
allows for the monitoring of drug responses and disease
progression. By providing insights into the cellular and molecular
landscape, scRNA-seq serves as a valuable tool in optimizing the
drug discovery process, ultimately facilitating the development of
more effective and targeted therapeutics.

(1) Target identification
ScRNA-seq has brought about a paradigm shift in the initial

stages of drug discovery, particularly in the identification of
therapeutic targets crucial for disease pathogenesis. This
technology facilitates target identification by unveiling dysregu-
lated cell types and states in disease conditions. Profiling the
transcriptomes of individual cells allows the identification of
specific genes and pathways that exhibit differential expression in
disease-associated cell populations compared with healthy
counterparts. This information becomes instrumental in guiding
the selection of potential therapeutic targets and prioritizing
candidate molecules for further exploration.

For instance, Abdelfattah et al. (2022) used scRNA-seq to
analyze over 200,000 human glioma, immunological, and
stromal cells at the single-cell level in glioblastoma. They
discovered S100A4 to be a novel target for immunotherapy in
glioblastoma using this method. Interestingly, eliminating this
target in non-cancerous cells showed an amazing capacity to
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rewire the immune system, resulting in a notable increase in
survival. In the context of chronic pancreatitis, single-cell
sequencing of pancreatic immune cells and T cell receptors has
shed light on potential therapeutic targets. The identification of
the CCR6-CCL20 signaling pathway in genetic chronic pancrea-
titis opens avenues for targeted interventions in humans (Lee et
al., 2022). In order to examine the relationship between tumors
and surrounding immune cells, a study from the University of
Texas MD Anderson Cancer Centre, USA, used scRNA-seq on
186,916 cells from 5 early-stage lung adenocarcinomas and 14
multi-region normal lung tissues (Sinjab et al., 2021). The results
of this study indicate that CD24 expression in tumor epithelium is
dramatically elevated and is connected with pro-tumor immune
phenotypes and decreased survival. These findings imply that
CD24 could be a promising target for the treatment of early-stage
lung adenocarcinome.

(2) Drug screening and optimization
ScRNA-seq has played a pivotal role in enhancing the

efficiency and precision of drug screening and optimization.
Traditional screening methods often rely on cell populations that
may not fully capture the heterogeneity present in the target
tissue or organ. Leveraging scRNA-seq, researchers can identify
and isolate specific cell types or subpopulations of interest,
allowing for a more nuanced assessment of their response to
various drug candidates.

Cao et al.’s (Cao et al., 2020a) high-throughput single-cell RNA
and VDJ sequencing of antigen-enriched B cells from 60
recovering patients serves as an instructive example. Using this
method, they quickly isolated 14 strong neutralising antibodies
against SARS-CoV-2 from a large collection of 8,558 IgG1+

clonotypes that bind to antigen. Among the antibodies against
SARS-CoV-2, BD-368-2 was found to have the strongest
neutralising impact. Additionally, its therapeutic and preventive
activity was verified in hACE2-transgenic mice infected with
SARS-CoV-2. This work shows how human neutralising anti-
bodies can be effectively discovered by high-throughput single-cell
sequencing, especially during pandemics of infectious diseases.

(3) Drug mechanisms of action
ScRNA-seq offers a valuable tool to gain insights into the

cellular and molecular changes induced by drugs, enabling a
comprehensive characterization of their mechanisms of action.
An example of this application is seen in the work of Taukulis et
al. (2021), who employed scRNA-seq to investigate acute
cisplatin-induced ototoxicity in a mouse model. By comparing
the transcriptomes of cisplatin-treated adult stria vascularis with
unperturbed adult stria vascularis, the researchers identified cell
type-specific regulatory networks. Their findings highlighted that
marginal and intermediate cells in the stria vascularis are
preferentially affected by cisplatin exposure. Additionally,
scRNA-seq data revealed specific gene expression changes
associated with chemotherapy-induced ototoxicity. Notably,
genes such as Alcam, Atp1b2, Spp1, and Car12 were down-
regulated, while Klf10, Cldn3, and Tspan1 were upregulated in
cisplatin-treated stria vascularis. These differentially expressed
genes present potential novel therapeutic targets to mitigate
ototoxicity caused by chemotherapy. Zhang et al. (2022f)
investigate the immunomodulatory mechanisms of dihydroarte-
misinin using scRNA-seq in combination with cellular and
biochemical methods. Their research revealed that dihydroarte-
misinin beneficially regulated immune cell heterogeneity and
splenic immune cell homeostasis by activating the SOD3-JNK-

AP-1 pathway to treat autoimmune diseases. Understanding the
mechanisms of drug action is vital for optimizing therapeutic
efficacy and minimizing adverse effects.

(4) Patient stratification
ScRNA-seq is a useful ally of personalised medicine, which

seeks to customise treatment plans based on unique patient
features. This technology contributes to patient stratification by
profiling the transcriptomes of individual cells, allowing for the
identification of markers relevant to disease prognosis or
therapeutic response.

In the context of infant acute lymphoblastic leukemia (iALL),
where relapse occurrence is often fatal (Pieters et al., 2019).
ScRNA-seq has shown promise in prognostic risk assessment of
iALL. Using samples from patients with MLL-rearranged infant
acute lymphoblastic leukemia (MLL-r iALL), Candelli et al.
(2022) performed scRNA-seq. By measuring the percentage of
cells found to be either sensitive or resistant to therapy, the
researchers were able to forecast when MLL-r iALL would
relapse. This approach outperformed current risk stratification
schemes, showcasing the potential of scRNA-seq in refining
prognostic markers for better treatment outcomes.

Our knowledge of cellular heterogeneity, disease processes, and
treatment responses at the single-cell level has been completely
transformed by the use of scRNA-seq in drug discovery and
development. Its contributions span the identification of ther-
apeutic targets, improvement of drug screening and optimization,
elucidation of mechanisms of action, and facilitation of patient
stratification. The integration of scRNA-seq in drug discovery
holds significant promise for developing more effective and
personalized therapies, ultimately leading to improved patient
outcomes.

Summary

The evolution of single-cell transcriptomic atlases through
advancements in scRNA-seq technology has provided unprece-
dented resolution, offering insights into complex cellular events
and enhancing our understanding of cell composition and
interactions across humans, model animals, and plants. This
chapter underscores the progress in different aspects of scRNA-
seq technology, emphasizing distinct features and strengths in
various areas. It is crucial to recognize that each single-cell
sequencing method has its own advantages and limitations.
Ongoing developments in this field aim to design improved
methods that enhance robustness and coverage, allowing for
comprehensive detection of cellular composition at multiple
levels and the depiction of cell landscapes within different species.
The expectation is that future innovations in scRNA-seq
technologies will contribute significantly to the advancement of
biological and clinical medicine, offering powerful tools for in-
depth exploration and understanding of cellular dynamics.

Chapter 2 Single-cell whole-genome sequencing

The microscopization of life science research proves that cell
population-based methods may not be suitable for certain areas
of study, such as tumor heterogeneity and early embryonic
development. In response, the introduction of single-cell tran-
scriptome sequencing technology in 2009 marked a significant
advancement (Tang et al., 2009). Building on this, Navin et al.
(2011) introduced single-cell whole genome sequencing tech-

28 SCIENCE CHINA Life Sciences Vol.68 No.1, 5–102 January 2025 https://doi.org/10.1007/s11427-023-2561-0

https://doi.org/10.1007/s11427-023-2561-0


nology (scWGS) in 2011 by combining whole genome amplifica-
tion (WGA) with high-throughput sequencing. This innovative
approach addresses challenges related to obtaining information
about heterogeneity between different cells in tissue samples and
enables the study of individual cells when conventional sequen-
cing might be impractical due to small sample sizes.

By sequencing DNA at the single-cell level, scWGS provides a
new dimension for studying the behavior and mechanisms of
individual cells. Applications of scWGS have expanded across
various research fields, including neuroscience, germline evolu-
tion, organogenesis, oncology, clinical diagnosis, immunology,
microbiology, embryo development, and prenatal genetic diag-
nosis. Recognizing its potential, scWGS was highlighted as one of
the most anticipated technologies in 2013 by the journal Nature
Methods.

The development of scWGS has indeed opened up avenues for
researchers to delve into inter-cell heterogeneity at the single-cell
level and explore various aspects such as single-nucleotide
variants, short insertions or deletions, and copy number variants.
This technology has proven particularly valuable for studying
the genomes of rare cells that hold biological or clinical
significance, including circulating tumor cells and cells used in
third-generation in vitro fertilization preimplantation genetic
diagnosis/screening. The scWGS process typically involves three
main steps: single-cell isolation, single-cell whole genome
amplification (scWGA), and the sequencing and analysis of the
amplified products. The critical challenge in this process is to
amplify the genome of a single cell effectively, obtaining sufficient
material for downstream analyses while minimizing artifacts
such as amplification bias, genome loss, mutations, and
chimeras. Addressing these challenges is essential to ensure the
accuracy and reliability of the genetic information obtained from
single cells.

In this section, we first focus on the advancements in scWGA
technology. Subsequently, we provide a detailed introduction to

several prominent scWGA chemistries, elucidating their crucial
biochemical reaction strategies. Our focus then shifts to high-
throughput scWGS methods, which enable the parallel sequen-
cing of tumor cell genomes on a massive scale. This approach
opens up opportunities to significantly broaden the scope of
intratumoral characterization. Key milestones in the develop-
ment of scWGA and high-throughput scWGS technologies are
visually represented in Figure 5. Lastly, we offer a summary of
the most recent practical breakthroughs in scWGS within the
field of biomedicine. This overview outlines a vision for applying
single-cell genomic sequencing in clinical research, highlighting
its potential impact on advancing our understanding of biological
processes and disease mechanisms.

ScWGA methods

Given the limited DNA content in a single cell (approximately 6
pg/cell), which falls short of the detection requirements of
sequencers, it is imperative to amplify the trace amounts of
whole-genome DNA in single cells before sequencing. This
amplification process aims to generate a complete genome with
high coverage, ensuring accurate and comprehensive sequen-
cing results in subsequent high-throughput sequencing. Over
time, major changes have occurred in WGA technology to meet
these demands. Notable methods include degenerate oligonu-
cleotide-primed polymerase chain reaction (DOP-PCR) (Telenius
et al., 1992), multiple displacement amplification (MDA) (Dean
et al., 2001), and multiple annealing and looping-based
amplification cycles (MALBAC) (Zong et al., 2012). Subsequent
innovations, such as linear amplification via transposon inser-
tion (LIANTI) (Chen et al., 2017a), single-stranded sequencing
using microfluidic reactors (SISSOR), primary template-directed
amplification (PTA) (Gonzalez-Pena et al., 2021), and multi-
plexed end-tagging amplification of complementary strands
(META-CS) (Xing et al., 2021) have further expanded the WGA

Figure 5. Timeline of the development of single-cell whole genome amplification and sequencing technology. The upper half of the graph shows the main events marking the
development of scWGA and low-through scWGS technologies, and the bottom half the development in throughput.
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toolkit. Table 1 provides an overview of the general character-
istics of these methods. In the following sections, we conduct a
review of several major WGA methods, focusing on their
coverage, uniformity, and accuracy. In short, there is no obvious
winner in amplification performance, and each strategy has
advantages according to the parameter that matters.

PCR-based amplification
PCR-based WGA methods come in various forms, including
primer extension preamplification PCR (PEP-PCR) (Zhang et al.,
1992), DOP-PCR (Telenius et al., 1992), tagged random primer
PCR (T-PCR) (Grothues et al., 1993) and ligation-mediated PCR
(LM-PCR) (Klein et al., 1999). These techniques were essential in
obtaining the amplification of genomic DNA from single cells,
meeting particular research objectives, and acting as models for
scWGA technology. One of the first scWGA techniques used was
PEP-PCR, which was later superseded by the more popular DOP-
PCR. These techniques have led to the development of
commercial kits, such as the PicoPLEX WGA Kit (Rubicon
Genomics, USA) and the GenomePlex Single Cell Whole Genome
Amplification Kit (Sigma-Aldrich, USA).

DOP-PCR operates on the principle of utilizing a partially
random primer for a two-step PCR amplification of template
genomic DNA (Telenius et al., 1992). The degenerate primers
consist of a random six base sequence in the middle flanked by
fixed sequences at each end (5′ CGACTCGAGNNNNNNATGTGG
3′). The short ATGTGG sequence at the 3′ end of the primer has
an extremely high distribution frequency in genomic DNA,
guiding the initial low-temperature annealing step and determin-
ing the starting site of amplification with a bias toward specific
sequences. The middle six degenerate bases create 46 different
sequences, and during annealing, one or more of these
degenerate bases, along with the 3′ end specific bases,
simultaneously bind to the template DNA, enhancing the
primer’s binding efficiency. The PCR amplification occurs in
two steps: the first few cycles (3–5) involve low-temperature
annealing (e.g., 30°C), followed by strand extension at an
elevated temperature. In the second step, the products from the
first step undergo further amplification using a primer targeting
the 5′ fixed sequence at a higher annealing temperature (62°C).

The efficiency of DOP-PCR amplification relies on primer
concentration and polymerase activity. At a low annealing
temperature, the primers can bind to multiple genomic loci,
resulting in amplification products that cover nearly the entire
genome. DOP-PCR stands out as a representative method in
PCR-based WGA, finding application in amplifying minute
amounts of human genomic DNA in single cells for analyses
related to tumor heterogeneity, assessment of copy number
variations, and detection of aneuploidies (Knouse et al., 2014;
McConnell et al., 2013; Navin et al., 2011). However, DOP-PCR
often generates low genome coverage (typically less than 10%)
(Navin et al., 2011), a characteristic associated with the
exponential nature of PCR amplification. Additionally, the PCR
amplification reaction has a high base mismatch rate, rendering
this amplification technology less suitable for the detection of
single-nucleotide variations due to the elevated false positive
rate.

Isothermal amplification
MDA is the most representative method among isothermal
scWGA methods, initially developed by Dean et al. (2001).

Operating under isothermal conditions, MDA employs a 6-base
pair random primer that randomly anneals to the genome,
initiating a strand displacement amplification reaction catalyzed
by phi29 DNA polymerase with robust strand displacement
activity. The single-stranded sequence produced through dis-
placement can be extended randomly by annealing with random
primers, resulting in the formation of multibranched amplifica-
tion structures. Due to the potent DNA synthesis ability of phi29
DNA polymerase, the synthesized DNA fragments are typically
50–100 kb in length. Additionally, the high replication fidelity of
phi29 DNA polymerase, characterized by an error rate of about
one nucleotide per 108, owing to its 3′→5′ exonuclease and
proofreading activities, makes MDA suitable for accurate single
nucleotide variation (SNV) calling. This feature has led to its
application in single-cell genome lineage tracing (Lodato et al.,
2015). Furthermore, MDA provides significantly higher genome
coverage compared with initial PCR-based methods. However, a
drawback of MDA is its exponential amplification process, similar
to DOP-PCR, which introduces sequence-dependent bias and
hinders coverage uniformity. It is worth noting that the
sequence-dependent bias of MDA is not consistently reproducible
across the genome from one cell to another, making copy
number variation (CNV) measurements noisy and normalization
less effective.

To address amplification bias and enhance uniformity and
coverage, various improved isothermal amplification technolo-
gies, including emulsion MDA (eMDA) (Fu et al., 2015), digital
droplet MDA (ddMDA) (Sidore et al., 2016), TruePrime (Picher et
al., 2016), SISSOR (Chu et al., 2017) and PTA (Gonzalez-Pena et
al., 2021) have been developed based on MDA technology. Both
eMDA and ddMDA involve dispersing the amplification process
into millions of small droplets, aiming to improve amplification
uniformity and correct bias. The TruePrime technique substitutes
the N6 primer in the MDA method with a unique DNA primase
called TthPrimPol to enhance amplification uniformity. SISSOR
enhances sequencing accuracy by randomly distributing mega-
base-sized single-stranded DNA fragments from homologous
chromosome pairs into numerous nanoliter compartments for
enzymatic amplification within a microfluidic device. By adding
exonuclease-resistant terminators to the reaction, the PTA
technique generates smaller double-stranded amplification pro-
ducts that perform limited subsequent amplification. This causes
the reaction to change from an exponential to a quasilinear
process, increasing the amount of amplification that comes from
the primary template and enhancing the coverage and uni-
formity of genome amplification. Currently, MDA-based products
are well-established such the REPLI-g Single Cell Kit from Qiagen.

MALBAC
Reported in 2012 by Zong et al. (2012), MALBAC (multiple
annealing and looping-based amplification cycles) is a scWGA
method designed to mitigate bias associated with nonlinear
amplification. MALBAC primers feature a common 27 nucleotide
sequence at the 5′ end and 8 random nucleotides at the 3′ end.
The amplification process begins with the hybridization of these 8
random nucleotides to the genomic DNA template at 0°C. Then,
as the temperature is increased to 65°C, DNA polymerases with
strand-displacement activity are used to create semiamplicons of
varying lengths (0.5–1.5 kb). At 94°C, the semiamplicons are
then denatured from the template. The semiamplicons are
amplified further to produce entire amplicons with complemen-
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tary ends, forming hairpins when the temperature is lowered (to
58°C). Full amplicons form loops that may impede further
amplification and cross-hybridization. Following five rounds of
preamplification, oligonucleotides containing the common 27
nucleotide sequence are used as primers in PCR to exponentially
amp up the entire amplicons. This process yields the micrograms
of DNA required for next-generation sequencing. Additionally,
commercial kits based on the MALBAC method have been
created, such as the MALBAC single-cell WGA test (Qiagen).

MALBAC stands out as more than just a combination of DOP-
PCR and MDA; it is fundamentally distinct due to its quasilinear
amplification, which circumvents sequence-dependent bias
associated with exponential amplification, thereby enhancing
amplification uniformity. In the initial phase of MALBAC
technology, multiple displacement reactions are employed to
achieve a whole genome coverage of the amplification product up
to 93%. MALBAC boasts both extensive coverage and uniform
amplification, making it suitable for the genome-wide detection
of SNPs and CNVs in a single cell (Hou et al., 2013; Zong et al.,
2012). The technology’s implementation has contributed to the
advancement of clinical assisted reproductive technology (Yao et
al., 2018). Furthermore, MALBAC demonstrates a low false
negative rate in SNV detection. However, when compared with
MDA technology, MALBAC does exhibit a higher false positive
rate in SNV detection due to the lower fidelity of the current DNA
polymerase used in comparison to the phi29 polymerase.

LIANTI
In contrast to previous WGA methods, such as the exponential
PCR reaction with degenerate priming in DOP-PCR (Telenius et
al., 1992), the strand-displacing DNA polymerase-driven ex-
ponential amplification of single-stranded DNA in MDA (Dean et
al., 2001), and the quasilinear amplification in MALBAC (Zong et
al., 2012) through looping-based amplicon protection followed
by PCR all of which involve nonspecific priming and exponential
amplification leading to bias and errors, a novel scWGA method

was developed by Xie et al.’s team (Chen et al., 2017a) in 2017,
known as linear amplification via transposon insertion (LIANTI).
LIANTI uses the Tn5 transposase technology to sustain linear
amplification during the whole genome amplification process.
This method randomly slices genomic DNA, and then fills in the
cut locations with a predetermined sequence. By utilizing the Tn5
transposase property, LIANTI inserts the T7 promoter into
genomic DNA. The genomic DNA fragments labelled with T7
promoters are then linearly amplified into thousands of copies of
RNAs using T7 RNA polymerase for IVT. RT and second-strand
synthesis come next, producing double-stranded LIANTI ampli-
cons that are prepared for DNA library construction. In
comparison to earlier techniques (DOP-PCR, MDA, and MAL-
BAC), LIANTI exhibits superior sensitivity and accuracy in
identifying CNVs and SNVs, respectively. Additionally, LIANTI
outperforms other WGA techniques (DOP-PCR, MDA, and
MALBAC) with a 97% genome coverage and a 17% allele
dropout rate.

META-CS
True SNV must be located at the same position on both DNA
strands, while polymerase mistakes and DNA damage often
happen at random on one of the two strands. Therefore,
sequencing both complementary strands of double-stranded
DNA (dsDNA) is essential to reduce false positives on single
strands and improve accuracy. Multiplexed end-tagging ampli-
fication of complementary strands (META-CS), a revolutionary
scWGA technique, was presented by Xie and colleagues in 2021
(Xing et al., 2021). Because of DNA complementarity, META-CS
can clearly identify and amplify the two DNA strands in a one-
tube reaction, reducing almost all false positives. De novo SNVs
can be reliably identified using this method from a single cell.

META-CS is built upon the previously reported multiplexed
end-tagging amplification method developed by this research
team. Initially, a combination of 16 unique transposon sequences
is mixed with Tn5 transposase in an equal molar ratio to create

Table 1. Comparison of mainstream WGA methodsa)

WGA
method Amplification principle Enzyme Product

length
Coverage

(%) Uniformity Accuracy Application Reference

PEP-PCR PCR-based DNA polymerase <2 kb ~50 +++ + CGH, LOH, STR, etc. (Zhang et al.,
1992)

DOP-PCR PCR-based DNA polymerase <2 kb ~45 +++ + FISH, SNP, SSCP, etc. (Telenius et al.,
1992)

MDA Isothermal amplification phi29 DNA polymerase <100 kb ~87 ++ +++ NGS, SNV, SNP, STR, single-cell
sequencing, etc. (Dean et al., 2001)

eMDA Isothermal amplification phi29 DNA polymerase <100 kb 72 +++ +++ CNV, SNV, single-cell
sequencing, etc. (Fu et al., 2015)

SISSOR Isothermal amplification phi29 DNA polymeras <100 kb ~70 +++ ++++ single-cell sequencing, haploid
analysis, etc. (Chu et al., 2017)

PTA Isothermal amplification phi29 DNA polymeras ~150 bp >95 +++++ +++++ CNV, SNV, single-cell
sequencing, etc.

(Gonzalez-Pena et
al., 2021)

MALBAC Combining isothermal
amplification with PCR

Bst enzyme;
Taq DNA polymerase

<2 kb ~93 +++ ++ single-cell sequencing, NGS, STR,
CGH, SNV, CNV, etc.

(Zong et al., 2012)

LIANTI Linear amplification Reverse transcriptase;
T7 RNA polymeras ~400 bp ~97 ++++ +++ CNV, SNV, CGH, single-cell

sequencing, chromosome analysis, etc.
(Chen et al.,

2017a)

META-CS End-tagging-based PCR
amplification Q5 DNA polymerase <2 kb 64 +++ ++++ SNV, single-cell sequencing, etc. (Xing et al., 2021)

a) CGH, comparative genomic hybridization; LOH, loss of heterozygosity; STR, short sequence repeat; FISH, fluorescence in situ hybridization; SNP, single nucleotide
polymorphism; SSCP, single-strand conformational polymorphism; NGS, second generation sequencing; CNV, copy number variation; SNV, single nucleotide
variation.
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transposon complexes. These complexes randomly cut the
genomic DNA from a single cell. Subsequently, genomic DNA
fragments tagged by two random transposon sequences undergo
denaturation through heating, releasing two single strands. To
obtain strand-specific labelling, these strands are subsequently
preamplification using two consecutive polymerase extension
processes. After each polymerase extension reaction, exonuclease
I is employed to eliminate excess primers. The products,
separately amplified from the sense and antisense strands of the
original DNA, can be differentiated by mapping them to the
reference genome. As a result, SNVs are determined with
information from both strands, significantly improving accuracy.

High-throughput scWGS methods

Since the introduction of the first scWGS method for profiling
copy numbers in human tissues (Navin et al., 2011), the field of
single-cell genomics has witnessed rapid progress over the past
decade. Early techniques were confined to profiling a small
number of cells at a time and were based on WGA chemicals
(Chen et al., 2017a; Dean et al., 2001; Telenius et al., 1992).
However, the study of tumor cell genome evolution and
reconstruction often requires the analysis of mutation signatures
in a large number of single-cell tumor genomes simultaneously.
Low-throughput scWGS methods pose challenges due to their
labor-intensive, costly, time-consuming nature, and limited
efficiency. Recent developments in combinatorial indexing,
nanowell, and microdroplet techniques have greatly increased
cell throughput and decreased costs (Laks et al., 2019; Minussi et
al., 2021; Vitak et al., 2017; Yin et al., 2019c). In the following
sections, we will delve into a detailed discussion and comparison
of high-throughput scWGS methods based on different strategies.
The characteristics of several key high-throughput scWGS
methods are summarized in Table S5 in Supporting Information.

Microfluidic-based high-throughput scWGS methods
(1) Direct library preparation method (DLP)
A direct DNA transposition single-cell library production (DLP)

approach was presented by Zahn et al. (2017). This method
creates indexed libraries straight from single cells. The DLP
method utilizes a specially designed microfluidic device to capture
and lyse single cells. Tn5 transposome complexes randomly
fragment the genomic DNA of a single cell, tagging each
fragment at the 5′ end with a distinct adaptor sequence. The
index barcodes and sequencing adaptors are then added to both
ends of the tagmented DNA inserts using eleven PCR cycles.
Following indexing, the libraries are combined for multiplexed
sequencing.

Prior to building libraries, early single-cell techniques used
WGA to capture entire genomes (Gawad et al., 2014; Navin et
al., 2011; Wang et al., 2014b). However, preamplification
introduces amplification biases and reduces coverage uniformity,
hindering the detection of CNVs (Macaulay and Voet, 2014;
Wang et al., 2012; Zong et al., 2012). DLP is an example of the
first direct production of single-cell libraries without preamplifi-
cation using tagmentation. This method produces genomes with
high uniform coverage and enables multiplexing of many cells,
which makes it appropriate for high-throughput and reasonably
priced CNV detection. Compared with DOP-PCR, DLP is more
cost-effective (approximately $0.50 per cell versus $15 per cell)
and time-efficient (2.5 h versus 3 d). However, the use of

microfluidic devices limits the throughput of cells and necessi-
tates a certain size of cells because very small cells may slip
through traps unless the devices are specifically made for that
type of cell. Large cells may also clog channels. Thus, additional
optimization is still required.

(2) Microfluidic droplet method
Increasing the throughput of cellular sequencing faces

challenges due to limitations in single-cell partitioning methods,
difficulties in amplifying genomic DNA from single cells, and the
complexity of enzymology steps for library preparation (Lan et al.,
2017; Vitak et al., 2017). In response to these challenges, Andor
et al. (2020) proposed a solution to enable large-scale scWGS.
Their method makes use of a two-stage microfluidic droplet-based
technique to automatically generate scWGS libraries with a high
cell number. Similar to previous single-cell transcriptome
investigations, microfluidic droplets are loaded with a barcoded
hydrogel bead that labels DNA. To create cell beads (CBs),
individual cells are first encased in a hydrogel matrix. Reagents
for cell lysis and protein digestion are then added to these CBs to
lyse and unpackage DNA. To create cell bead-gel bead (CBGB)
emulsion, a second microfluidic chip is utilized in which a gel
bead (GB) is functionalized with millions of copies of a distinct
droplet-identifying barcode and co-encapsulated with the hydro-
gel CB and enzymatic reaction mix. CBGB dissolves to release
contents after encapsulation. Genomic DNA fragments labelled
with a sequencing adaptor and a barcode sequence are obtained
by a two-step isothermal incubation process. After breaking and
purifying the emulsion, the library is ready for Illumina
sequencing. This microfluidic droplet-based cellular isolation
technology can isolate tens of thousands of cells in a single
experiment at a throughput that surpasses that of conventional
DLP techniques.

Nanowell-based high-throughput scWGS methods
(1) High-throughput direct transposition scWGS method (DLP+)
When compared with preamplification-based techniques, the

earlier DLP method, which made use of microfluidic devices,
effectively decreased biases (Zahn et al., 2017). Despite the good
performance of microfluidic-based DLP analysis, the usage of
customised microfluidic devices limits cell size and presents
obstacles to their general adoption and scalability. Additionally,
some droplet-based methods face similar constraints on cell size
(Andor et al., 2020). In response to these problems, Emma Laks
and colleagues (Laks et al., 2019) developed the DLP+ platform, a
higher-throughput direct transposition scWGS system built on
commercially available “off the shelf” picoliter volume piezo-
dispensing technology and commodity high-density nanowell
arrays. In the DLP+ method, single cells are isolated through
limiting dilution and dispensed into nanowell arrays. To achieve
an almost flawless single-cell isolation rate, chosen cells are
deposited into reaction chambers selectively using spotting
software, which locates them inside the dispensing nozzle. A
10x inverted fluorescence microscope scans each nanowell chip
to verify single-cell occupancy and gather data on the cell state.
Before the library preparation reagents are spotted, imaging takes
place, enabling the exclusion of doublets, empty wells, or
contaminated cells from the procedure. Adding reagents,
spinning, sealing, and heating the chip are the procedures
involved in creating DLP+ libraries from unamplified single cells.
Using standard Illumina procedures and HiSeq equipment, the
resulting libraries are pooled during recovery and sequenced at
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the required coverage depth.
With its transparent dispensing nozzle and inbuilt camera,

DLP+ provides a unique benefit that makes it possible to take
high-resolution microscope images of objects prior to dispensa-
tion. By actively selecting individual cells, this function helps to
prevent the sequencing of detritus or doublet cells. Furthermore,
by methodically modifying a number of variables, including cell
lysis volume and buffer type, transposase (Tn5) concentration,
post-indexing PCR cycles, and cell lysis/DNA solubilization
duration, DLP+ has refined the physical reaction determinants
for producing high-quality libraries. The DLP approach is the
foundation for these optimizations (Zahn et al., 2017). Moreover,
DLP+ has shown genome coverage uniformity that is compar-
able to that of the microfluidic-based DLP approach, but at a
throughput that is significantly higher, scaling from hundreds to
tens of thousands of cells per experiment across a range of tissue
types.

(2) Archival nanowell sequencing method (Arc-well)
The previously developed high-throughput scWGS methods,

including DLP (Laks et al., 2019), SCI-seq (Vitak et al., 2017),
and ACT (Minussi et al., 2021), have a common limitation-they
require fresh or snap-frozen tissue samples, rendering them
unsuitable for the analysis of archival formalin-fixed paraffin-
embedded (FFPE) tissue samples. Addressing this challenge, a
novel method called Arc-well (archival nanowell sequencing)
was introduced by Wang et al. (2023a). To perform Arc-well,
FFPE blocks are sectioned and deparaffinized to produce single-
nucleus suspensions, which are subsequently used for FACS
sorting. After the sorted nuclei are distributed into a 5,184-well
nanowell chip, the nanowells can be imaged to select single cells
and prevent doublets, deteriorated nuclei, and empty wells. Then,
a five-step equal volume dispensing step is performed by using the
ICELL8 cx system (TaKaRa Bio), which is used to dispense
downstream reagents into nanowell chips. First, lysis reagents
are dispensed to lysis selected nuclei and release the genomic
DNA. Next, reagnets for labeling reaction (Tn5 transposome) and
Tn5 inactivation are dispensed. Furthermore, by depositing dual
indices (72×72 combinations) and amplifying the PCR result,
every nanowell is given a distinct barcode combination. The
barcoded libraries are then pooled and sequence on the Illumina
platforms.

The acoustic cell tagmentation (ACT) technique was first
presented by the researchers in 2021. This technique made use of
acoustic liquid transfer (ALT) technology, direct tagmentation of
genomic DNA, and FACS of single nuclei to enable high-
throughput single-cell DNA sequencing at single-molecule
resolution (Minussi et al., 2021). When comparing the ACT
method with Arc-well, it was found that Arc-well exhibited
higher throughput (1,900–2,600 cells per experiment), lower
reagent costs, and reduced technical variability. Importantly,
Arc-well demonstrated the capability to amplify degraded DNA
fragments commonly found in archival FFPE tissues, making it
compatible with such tissue samples.

Combinatorial indexing-based high-throughput scWGS methods
(1) SCI-seq
FACS is used in the SCI-seq method to sort individual cells into

96-well plates (Vitak et al., 2017). Subsequently, genomic DNA
from a single cell undergoes random fragmentation by Tn5
transposase, and each resulting fragment is tagged with index 1
and an adaptor. The introduction of index 2 is achieved through

a PCR reaction. Ultimately, the distinct libraries are combined for
sequencing. Nucleosome depletion is used in a combinatorial
indexing procedure by SCI-seq, which makes it possible to
produce thousands of single-cell genome sequencing libraries at
once. This approach also has the benefit of not requiring
specialized microfluidics equipment or droplet emulsification
procedures, in addition to its high throughput. However, it is
noted that SCI-seq technology introduces a certain bias during
the PCR amplification process.

(2) SCI-L3-WGS
To address amplification bias, Yin et al. (2019c) introduced sci-

L3, a method that integrates combinatorial indexing with linear
amplification. With the help of a 3-level indexing technique, sci-
L3-WGS considerably increases LIANTI’s throughput, allowing it
to sequence at least thousands or even millions of cells per
experiment while minimizing amplification biases. The sci-L3-
WGS process is delineated into three key steps: (i) Tn5
transposase randomly cleaves genomic DNA from a single cell
and attaches barcode 1 to each fragment. (ii) A second set of
barcodes is ligated to the ends of DNA fragments, along with a T7
promoter positioned outside both barcodes. (iii) The introduced
T7 promoter initiates IVT, followed by RT and second-strand
synthesis. A third set of barcodes and UMIs are introduced during
second-strand synthesis. Duplex DNA molecules can be prepared
in accordance with conventional library preparation procedures.
Each molecule contains three barcodes that identify the cell of
origin. The sci-L3 strategy has a number of benefits over current
methods and any straightforward combination of SCI-seq (Vitak
et al., 2017) and LIANTI (Yin et al., 2019c). First off, using IVT, it
accomplishes the same linear amplification as LIANTI. Second,
because it uses three rounds of barcoding, its theoretical
throughput surpasses one million cells per experiment at a cheap
cost of library preparation (Cao et al., 2019). Third, sci-L3 is a
flexible strategy for linear amplification combined with high-
throughput cellular indexing; it also can be used for other single-
cell sequencing analysis besides scWGS, such as single-cell RNA/
DNA co-assays.

Applications of scWGS in biomedicine

With its ability to reveal differences in single-cell genomic
architecture, scWGS technology is a potent tool that is used in
many different fields, including tumor biology, somatic mutation
and mosaicism, organismal development, germ cell mutation and
development, fertility, and microbial research. It has become a
major area of study in the life sciences. The applications of this
technology in the fields of fertility and tumor biology will be the
focus of the discussion that follows.

(1) Tumor biology
Tumor is a multifaceted and diverse disease characterized by

genomic instability and the accrual of somatic mutations, and its
Intratumoral heterogeneity poses a significant challenge to
personalized cancer medicine. Traditional bulk sequencing
methods have offered valuable insights into the genomic makeup
of cancer; however, they often overlook the inherent hetero-
geneity within tumors, resulting in an incomplete portrayal of
the disease. The advent of scWGS has proven instrumental in
overcoming this limitation. By enabling the analysis of individual
cancer cells at a single-molecule level, scWGS has exhibited
significant potential in various facets of cancer research, such as
elucidating intratumoral heterogeneity, interpreting the evolu-
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tion of clonal processes, comprehending invasion and metastasis,
investigating circulating tumor cells (CTCs), and evaluating
treatment outcomes.

A study concentrating on breast malignancies revealed the
first investigation of intratumoral heterogeneity utilizing scWGS
based on DOP-PCR. This study identified subclonal lineages
inside breast tumors using copy number changes (Navin et al.,
2011). Subsequent scWGS studies, utilizing diverse cancer types
such as ovarian (McPherson et al., 2016), bladder (Li et al.,
2012), brain (Francis et al., 2014), renal (Xu et al., 2012),
colorectal (Leung et al., 2017; Liu et al., 2017), liver (Hou et al.,
2016), lung (Ferronika et al., 2017), and hematological (Gawad
et al., 2014; Hughes et al., 2014a) cancers, have expanded our
understanding of intratumoral heterogeneity at the levels of
CNVs and SNVs. These investigations have revealed a correlation
between tumor subtype and subclonal diversity in specific cases.
For example, Baslan et al. (2020) conducted a comprehensive
analysis of 2,086 breast cell genomes from 16 breast cancer
samples using a DOP-PCR-based sequencing method. They
observed that estrogen receptor-negative breast cancers exhibit
higher subclonal diversity compared with estrogen receptor-
positive breast cancers.

Phylogenetic analyses based on intratumoral heterogeneity
profiles obtained through single-cell DNA sequencing (scDNA-
seq) provide valuable insights into identifying driver mutations-
genetic alterations that play a significant role in cancer
development and progression. Analyzing the genomes of
individual cancer cells allows researchers to pinpoint specific
mutations driving tumor growth, offering crucial information for
the development of targeted therapies that address these driver
mutations. In a work by Wang et al. (2014b), hundreds of breast
cells were profiled using a combination of targeted duplex single-
molecule sequencing and scWGS. In two individuals with breast
cancer, the researchers looked into mutational evolution and
clonal diversity. Their research showed that SNVs gradually
evolved, resulting in a high degree of clonal diversity. On the
other hand, aneuploid rearrangements happened early in the
genesis of tumors and stayed very stable during clonal growth.
The investigation discovered many nonsynonymous mutations
in genes linked to cancer, such as PIK3CA, CASP3, FBN2, and
PPP2R5E, in a sample of invasive ductal carcinoma that was
positive for oestrogen receptors. Interestingly, it is known that
the most frequent driver mutation in luminal A breast tumors is
PIK3CA (Ellis et al., 2012; Network, 2012).

CTCs, originating from primary tumors and entering the
peripheral blood, have the potential to contribute to metastasis.
ScWGS of CTCs presents a promising approach for noninvasive
sampling of tumors, offering insights into noninvasive prognosis
or even diagnosis. In a study by Riebensahm et al. (2019), scWGS
was employed to analyze the mutation characteristics of genes in
CTCs from breast cancer brain metastasis patients. The study
identified mutated genes such as TP53, ARID1A, CDH1, and TTN,
with ARID1A, involved in chromatin remodeling, highlighted as
a potential druggable target. The MALBAC approach was
employed by Ni et al. (2013) to examine the genomes of
individual CTCs obtained from patients with lung cancer. The
analysis revealed the presence of insertions/deletions (indels) and
SNVs that are linked to cancer in the CTC exomes. This mutation
information provided potential clinical guidance for personalized
therapy. Additionally, CTCs have been utilized for noninvasive
monitoring of treatment response (Dago et al., 2014).

In summary, scWGS stands as a groundbreaking technology in
cancer research, providing a comprehensive understanding of
the genomic landscape of individual cancer cells. By uncovering
clonal evolution, identifying driver gene mutations, tracking
chromosomal abnormalities, studying the tumor microenviron-
ment, and detecting minimal residual disease, scWGS offers
valuable insights for cancer diagnosis, prognosis, and targeted
therapy. As scWGS technology continues to develop, it holds
great promise for advancing personalized cancer medicine.

(2) Fertility
Preimplantation genetic diagnosis (PGD) and preimplantation

genomic screening (PGS) for embryos created through in vitro
fertilization (IVF) are two clinical uses for scWGS. This helps
prevent the inheritance of harmful mutations and chromosomal
abnormalities by enabling a thorough study of chromosomes. For
this, a variety of genome analysis systems are used, including
multiplex quantitative PCR, comparative genomic hybridization
(CGH) arrays, and SNP arrays (Rubio et al., 2013; Tobler et al.,
2014; Treff et al., 2012). scWGS technologies have improved
conventional methods of analyzing embryo biopsies by enabling
simultaneous identification of aneuploidy and mutations
throughout the genome (Kumar et al., 2015; Treff et al., 2013;
Wells et al., 2014). The rapid advancement of high-throughput
sequencing methods has further decreased expenses and
improved the accuracy and resolution of PGD/PGS at the
chromosomal level. This approach holds promise for enhancing
the accuracy of selecting healthy embryos during IVF proce-
dures, improving the success rates of assisted reproduction, and
reducing the risk of genetic disorders in newborns. Below, we
describe several application examples of scWGS in PGD/PGS.

The use of scWGS in PGS and PGD during IVF has been shown
in a number of research: Wells et al. (2002) utilized DOP-PCR-
based WGA to perform scWGA on the first polar body,
successfully detecting chromosomal abnormalities in embryos
using CGH technology. Daina et al. (2013) conducted monogenic
analysis on fourteen embryos for a family affected by Lynch
syndrome, achieving successful double-factor PGD using the MDA
method and leading to the birth of two healthy children. Hou et al.
(2013) employed MALBAC-based sequencing technology to
analyze the genomes of single human oocytes from eight healthy
donors. They demonstrated how to accurately and cost-effectively
select normal fertilized eggs for embryo transfer through
MALBAC-based PGS during IVF. Huang et al. (2014) collected
23 frozen cleavage embryos from three pregnant women donors
and performed single-cell CGH, SNP, and MALBAC sequencing for
24-chromosome aneuploidy analysis. MALBAC sequencing
results showed a high concordance rate with CGH and SNP,
indicating its application value in PGD/PGS. Shang et al. (2018)
extended the application of MALBAC-scWGS to PGD/PGS
detection of mitochondrial disorders, demonstrating the
versatility of this technology in addressing various genetic
conditions.

ScWGS has revolutionized PGD/PGS detection by enabling the
analysis of individual cells within embryos. This powerful
technique provides detailed information on chromosomal
abnormalities, structural variations, and mutational landscapes.
The ability to examine the genomic content of individual cells
within embryos enhances the precision of genetic analysis,
offering valuable insights for selecting embryos with the highest
likelihood of success during IVF. As a result, scWGS has
contributed to improving the success rates of IVF procedures.
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Summary

The progress in single-cell genomics technology has not kept
pace with that of transcriptomics, mainly due to challenges in
achieving even genomic coverage during DNA capture. None-
theless, single-cell genome sequencing has brought about
significant insights into various previously inaccessible biological
questions. This technology has found applications in diverse
research fields, including somatic mutagenesis, understanding
genome function, studying organismal development, and explor-
ing microbiology. Single-cell genome sequencing shows great
potential in clinical and translational research and practical
applications, especially for the oncology and assisted reproduc-
tion field.

Chapter 3 Single-cell epigenome sequencing

The epigenome of a cell regulates its cell type-specific gene
expression. Understanding epigenetic variations is crucial to
reveal transcriptional mechanisms that determine tissue and
cellular heterogeneities during development, disease formation,
and progression. The epigenome involves a variety of precisely
regulated epigenetic features, such as nucleic acid methylation,
chromatin states, nucleosome positions, histone modifications
(HM), TF bindings, and high-order chromatin structures. These
features interact with one another to influence nearby genome
activity without changing DNA sequences, which further
controls cellular activities and results in heritable phenotypes.
Single-cell epigenome sequencing techniques, as well as corre-
sponding computational analysis methods, have been developed
and widely used in many research areas, especially in cancer
immunology, embryonic development, and neurobiology. In this
chapter, we survey the recent advances in sequencing techniques
and computational tools developed for single-cell epigenome data
analysis.

Techniques for sequencing the single-cell epigenome

Methylation

Methylation is a type of epigenetic modification that adds methyl
groups (CH3) to nucleic acids. In vertebrates, DNA is mostly
methylated at the carbon atom occupying the fifth position of the
cytosine ring (5mC). The majority of cytosine methylation
generally occurs in the context of CpG dinucleotides, which
usually group in CpG-dense regions called CpG islands (CGIs).
These regions show high associations with gene promoters,
resulting in methylation-regulated gene expression in a cis
manner. There are also other DNA modifications, such as 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-
carboxylcytosine (5caC), which are intermediate products of
DNA demethylation and play critical roles in many biological
processes. Based on whether they use the bisulfite conversion or
not, two mainstream types of sequencing methods have been
adopted for profiling DNA methylation at the single-cell level.
Furthermore, N6-methyladenosine (m6A) is also an abundant
RNA methylation that affects RNA regulation and cellular
functions. Another technique for profiling m6A from RNA at
the single-cell level has been developed as well.

Over the past decades, bisulfite sequencing has become the
gold standard for profiling genome-wide DNA methylation. With
the sodium bisulfite treatment, the unmethylated cytosines are

deaminated to uracil, while the methylated cytosines remain
unchanged. In the following PCR amplification and sequencing,
the unmethylated cytosines are then read as thymine, while the
methylated cytosine is still read as cytosine. The efficiency of
bisulfite treatment reaches about 95%, and the readout of
bisulfite-based sequencing methods achieves single base-pair
resolution, which enables them to become the dominant
methods. Whole-genome bisulfite-sequencing (WGBS) (Cokus et
al., 2008) can cover almost all the CpG sites of the whole
genome, but the requirement for very deep sequencing makes it
costly. Then, reduced representation bisulfite sequencing (RRBS)
(Gu et al., 2010) has been developed as a cost-efficient method. It
utilizes restriction enzyme (MspI) digestion and size fractionation
to enrich CpG-dense regions so that it reduces the complexity and
size of the sequence library.

To overcome the massive loss of DNA when detecting
methylation in single cells, the single-cell RRBS (scRRBS) (Guo
et al., 2013) protocol was introduced. It integrated all of the
experimental processes in a single-tube reaction without any
purification steps before the bisulfite conversion process, then
performed two rounds of PCR amplification and deep sequencing.
To remove the PCR amplification bias, UMIs were introduced by
quantitative RRBS (Q-RRBS) (Wang et al., 2015). To avoid the
bisulfite-induced loss of intact sequencing templates and avoid
amplification bias, post-bisulfite adaptor tagging (PBAT) was
adopted in scBS-seq (Clark et al., 2017; Smallwood et al., 2014)
and scPBAT (Kobayashi et al., 2016). scWGBS (Farlik et al.,
2015) implements the PBAT but without the requirement for the
preamplification step, which is suitable for high-throughput
analysis at low sequencing coverage. Genome-wide CpG cover-
age is not always needed and expensive; therefore, single-cell
locus-specific bisulfite sequencing (SLBS) (Gravina et al., 2015)
can be a cheaper choice and is able to directly detect
epimutations in DNA methylation patterns. With the prosperous
single-cell barcode or separation techniques invention for high-
throughput sequencing, such as microfluidics device, combina-
torial index, and nucleus sequencing, they were adopted in
microfluidic diffusion-based reduced representation bisulfite
sequencing (MID-RRBS) (Ma et al., 2018), single-cell combina-
torial indexing for methylation analysis (sci-MET) (Mulqueen et
al., 2018) and single-nucleus methylcytosine sequencing (snmC-
seq) (Luo et al., 2017), respectively. To enrich more regions
where CpG methylation is functionally relevant, including
promoters, CpG islands, CTCF insulators, and enhancers, a
single-cell extended representation bisulfite sequencing (scXRBS)
(Shareef et al., 2021) was established by leveraging an early
barcoding step for high sensitivity and sample multiplexing.

A limitation of bisulfite treatment is that unmethylated
cytosine, 5fCs, and 5caCs, are all converted to uracil and cannot
be discriminated from each other, which hampers the investiga-
tion of DNA demethylation. Single-cell methylase-assisted
bisulfite sequencing (scMAB-seq) (Wu et al., 2017b) was
established to solve this problem by pretreatment of the DNA
with the CpG methylation enzyme M.SssI, which converts only
the cytosines to 5mCs, protects Cs but not 5fCs and 5caCs, and
enables direct detection of 5fCs and 5caCs as uracils.

Besides bisulfite treatment, methylation-sensitive restriction
enzymes (MSREs) are also widely used in detecting and
sequencing DNA methylation. Restriction enzyme-based single-
cell methylation assay (RSMA) (Kantlehner et al., 2011) is easy
to implement, but its results are reported by gel electrophoresis,
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and it is not a quantitative method. A similar method, single-cell
restriction analysis of methylation (SCRAM) (Lorthongpanich et
al., 2013), also detects the methylation by MSREs but uses real-
time quantitative PCR (RT-qPCR) as readout. Both of these
methods fail to distinguish between heterozygous and hemi-
zygous methylated alleles in diploid cells. Along with SCRAM and
single-cell genotyping by next-generation sequencing (NGS),
single-cell analysis of genotype, expression, and methylation (sc-
GEM) (Cheow et al., 2016) allows for a more reliable assessment
of methylation status at specific sites. Genome-wide CGI
methylation sequencing for single cells (scCGI-seq) (Han et al.,
2017) achieved high single-cell CGI coverage, which extended
the use of MSREs from a limited number of loci to CGIs at the
genome-scale. To allow genome-wide detection of 5hmC marks
in single cells, the restriction endonuclease AbaSI was used in
single-cell hydroxymethylation sequencing (scAba-seq) (Mooij-
man et al., 2016). Without using MSREs, reporter of genomic
methylation (RGM) (Stelzer et al., 2015) adopted a fluorescent
reporter system, which allows for visualization and tracing of
dynamic changes in DNA methylation.

Apart from these two conventional methods, the enzyme
conversion-based methods have emerged as less damaging
alternatives to bisulfite treatment and thus have been applied
to single-cell analysis. EM-seq identifies 5mC and 5hmC by using
two sets of enzymatic reactions. The initial reaction involves
TET2 and T4-BGT converting 5mC and 5hmC into products
resistant to deamination by APOBEC3A. Subsequently, the
second reaction, employs APOBEC3A to deaminate unmodified
cytosines, transforming them to uracils (Vaisvila et al., 2021).
Recently, sciEM combined single-cell combinatorial indexing
with enzymatic conversion marks significant advancement as
the first non-bisulfite single-cell DNA methylation sequencing
method (Chatterton et al., 2023). Similar strategies have also
been adopted for RNA methylation detection. Global RNA m6A
profiling reveals its functions in gene expression control,
physiological processes, and disease states. Deamination adjacent
to RNA modification targets (DART-seq) utilizes a fusion protein
consisting of the m6A-binding YTH domain tethered to the
cytidine deaminase APOBEC1 (APOBEC1-YTH) to conduct C-to-
U editing at cytidine residues. DART-seq is antibody-free, which
allows for mapping m6A from ultra-low-input amounts of RNA.
Therefore, the same group established the single-cell DART-seq
(scDART-seq) (Tegowski et al., 2022) to identify RNA m6A sites
in single cells.

Chromatin accessibility and nucleosome positioning
Chromatin accessibility is a widely studied characteristic of the
eukaryotic genome. Open chromatin is a necessary condition for
DNA to interact with other factors, such as TFs or non-coding
RNAs, which play crucial roles in remodeling chromatin or
initiating transcriptions. Also, the nucleosome comprises 8-unit
histones and is wrapped with naked DNA to form chromatin. The
movement of nucleosomes on the genome, or nucleosome
positioning, affects chromatin accessibility. At the bulk level,
assays for transposase-accessible chromatin (ATAC-seq) (Buen-
rostro et al., 2013) and Deoxyribonuclease I digestion (DNase-
seq) (Song and Crawford, 2010) have been widely used to reveal
that chromatin accessibility is a key component of the epigenetic
landscape. The dynamics of chromatin accessibility drive cell
differentiation and precise gene regulation. Profiling and analyz-
ing chromatin accessibility at the single-cell level can help reveal

the nature of cell heterogeneity and gene expression.
ATAC-seq and DNase-seq have been applied to single cells,

which can explore the different chromatin states and cell
heterogeneity in massive cells. scATAC-seq (Buenrostro et al.,
2015) combines microfluidics and Tn5 tagmentation with
sequencing barcodes, while scDNase-seq utilizes FACS to sort
single cells and digest them with DNase I. The scDNase-seq can
detect more DNase I hypersensitive sites (DHSs) with specific
properties related to gene expression. However, both methods
have relatively low cell throughput due to the microfluidic
equipment. To improve the cell throughput in a single experi-
ment, scATAC-seq in small volumes (μATAC-seq) (Mezger et al.,
2018) integrates fluorescence imaging and addressable reagent
deposition across a parallel nano-well array to improve the cell
throughput to ~1,800 cells per chip and yield higher enrich-
ment. Another multiple index barcode method was introduced to
them in single-cell profiling of chromatin accessibility by
combinatorial cellular indexing (sci-ATAC-seq) (Cusanovich et
al., 2015) and indexing single-cell DNase sequencing (iscDNase-
seq) (Gao et al., 2021b). These approaches significantly improved
the cell throughput to ~15,000 cells. Furthermore, droplet-based
single-cell combinatorial indexing for ATAC-seq (dsciATAC-seq)
(Lareau et al., 2019) integrated droplet-microfluidics-based
method and combinatorial indexing, which makes profiling
chromatin accessibility in ~500,000 single cells possible. Also,
the single nucleus assay for transposase-accessible chromatin
using sequencing (snATAC-seq) (Muto et al., 2021) only uses the
cell nucleus for sequencing, which alleviates the mitochondrial
contamination to yield higher quality cells and lower noise.

Nucleosome organization and positioning are also involved in
forming chromatin compaction and accessibility. Single-cell
micrococcal nuclease sequencing (scMNase-seq) (Lai et al.,
2018) adopts FACS sorting, lysis, and digestion by MNase to
build the library to profile genome-wide nucleosome positions. It
reports cell heterogeneity of nucleosome positioning and nucleo-
some spacing at DHSs.

Histone modification and transcription factor binding
Different HMs indicate different chromatin states and activity of
chromatin states, which also affect TF binding and transcription.
Antibody-based methods, such as chromatin immunoprecipita-
tion assays with sequencing (ChIP-seq) (Kim and Ren, 2006),
have been widely used to profile HMs and TFs landscape on the
whole genome. Droplet-based chromatin immunoprecipitation
followed by sequencing (Drop-ChIP) (Rotem et al., 2015) and
later single-cell ChIP-seq (scChIP-seq) (Grosselin et al., 2019) first
separate cells into droplets that contain lysis buffer and MNase,
and then barcode them before the immunoprecipitation step.
They increase the efficiency of the pull-down step and give low
background results. To improve the read number per cell,
simultaneous indexing and tagmentation-based ChIP-seq (itCh-
IP-seq) (Ai et al., 2019) adopted the Tn5 transposase-based
tagmentation coupled with simultaneous addition of primers for
barcoding and PCR amplification. It achieves ~9,000 reads per
cell, close to that in scATAC-seq assays. Due to the low affinity
and efficiency of antibodies, all these methods are used to profile
HMs instead of TFs.

Cleavage under targets & release using nuclease (CUT&RUN)
(Skene and Henikoff, 2017) utilizes chromatin immune-cleavage
on native chromatin, which is a convenient and efficient low-
input method. It has also been adapted to the following similar
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techniques, including single-cell chromatin integration labeling
(scChIL-seq) (Harada et al., 2019), single-cell chromatin
immune-cleavage sequencing technique (scChIC-seq) (Ku et al.,
2019), combinatorial barcoding and targeted chromatin release
(CoBATCH) (Wang et al., 2019b), antibody-guided chromatin
tagmentation sequencing (iACT-seq) (Carter et al., 2019), ultra-
low-input cleavage under targets and release using nuclease
(uliCUT&RUN) (Patty and Hainer, 2021), single-cell cleavage
under targets and tagmentation (scCUT&Tag) (Bartosovic et al.,
2021), and indexing single-cell immune-cleavage sequencing
(iscChIC-seq) (Ku et al., 2021). In particular, scChIC-seq,
uliCUT&RUN, and iscChIC-seq use the protein A-micrococcal
nuclease (pA-MNase) as the cleavage enzyme, and others use the
Tn5 transposase-protein A (pA-Tn5) because of the release of
MNase-cleaved fragments into the supernatant, which is not
suitable for single-cell platforms. Interestingly, Tn5-based ap-
proaches, including CoBATCH, uliCUT&RUN, and scCUT&Tag,
profile not only the histone modifications but also several
abundant TFs, such as RNA polymerase II (POL II), NANOG,
OLIG2, and RAD21.

Single-cell DNA adenine methyltransferase identification
(scDamID) (Kind et al., 2015) was applied to the detection of
how the chromosomes are spatially organized inside interphase
nuclei. DNA adenine methyltransferase (Dam) methylates
adenines that are adjacent to positions where the protein of
interest interacts with the DNA. These methylated adenines are
amplified by PCR and identified by NGS. Combining single-cell
DamID with messenger RNA sequencing (scDam&T-seq) (Rooi-
jers et al., 2019) successfully profiled the RING1B binding sites
paralleling the transcriptome, providing a powerful tool to
identify protein-mediated mechanisms that regulate cell-type-
specific transcriptional programs in dynamic processes and
heterogeneous tissues.

3D genome structure
Chromatin is spatially and structurally organized and compart-
mentalized in the cell nucleus, contributing to the effects of cis-
regulatory elements (CRE) and trans-regulatory factors. Chromo-
some conformation capture (3C) (Hagège et al., 2007) detects
genomic regions located in close proximity to each other. With
the continuous development of conformation-based techniques,
high-throughput sequencing-based Hi-C has enabled genome-
wide chromatin interaction detection. Similar to other single-cell
sequencing approaches, the isolation or barcoding of individual
cells is a primary task for single-cell Hi-C (scHi-C) (Nagano et al.,
2013). scHi-C reduces the scale of the traditional Hi-C protocol
and sorts cells into multi-well plates for tagmentation. Single-
nucleus Hi-C (snHi-C) (Flyamer et al., 2017) amplifies the entire
genome and eliminates the biotin fill-in step. Diploid chromatin
conformation capture (Dip-C) (Tan et al., 2018) simplifies the
experimental protocols with a tagmentation-based strategy.
Combinatorial indexing was introduced in Single-cell combina-
torial indexed Hi-C (sciHi-C) (Ramani et al., 2017), avoiding the
need to isolate cells. To capture long-range and higher-order
interactions that are limited by proximity ligation, single-cell
split-pool recognition of interactions by tag extension (scSPRITE)
(Arrastia et al., 2022) detects both inter- and intra-chromosomal
interactions and more DNA contacts per cell.

The key distinctions, limitations, and biological materials used
in the original research of the reviewed techniques are
summarized in Figure 6 and Table S6 in Supporting Information.

Several challenges need to be overcome in the future. First, due to
the low rate of DNA capture and lower DNA content than RNA in
a single cell, single-cell epigenome data is currently highly sparse.
Second, existing methods still have difficulty detecting the precise
binding location of TFs, particularly for TFs that are not evenly
distributed over the whole genome. Third, the elaboration of the
mechanism of gene regulation from DNA to cell states and
phenotypes continues to demand the further development of
single-cell multi-omic approaches.

Computational methods for single-cell epigenome data

Reads preprocessing, quality control, and quantification
The read adaptor trimmers and mappers, which are designed for
bulk tissues, can also be used for single-cell reads. Fastp (Chen et
al., 2018), and Trimmomatic (Bolger et al., 2014) are used for
removing the adapter sequence to facilitate the read mapping.
For DNA methylation data, especially data generated by bisulfite-
based methods, Bismark (Krueger and Andrews, 2011), BSMAP
(Xi and Li, 2009), and Bsseeker (Chen et al., 2010) were adopted
to map the reads to the genome. Bisulfite conversion induces
largely depleted cytosines of the genome sequences, which causes
multiple mapping sequencing reads, and this situation is more
serious when it comes to single-cell data. The scBS-map (Wu et
al., 2019a) was developed by remapping chimerical reads, which
is the majority of the unmapped reads, with a local alignment
approach, and dramatically improving the overall mapping
efficiency. For scATAC-seq or other non-converted DNA
sequences, BWA (Li and Durbin, 2009), bowtie2 (Langmead et
al., 2019), and minimap2 (Li, 2018) were widely used to perform
the mapping. Recently, chromap has brought pseudo-alignment
to DNA mapping, which significantly improves the mapping
efficiency with comparable mapping rate, and has been adopted
in several analysis pipelines.

For quality control (QC), FastQC is often used to control the
quality at the reading level. Limitations on the number of mapped
reads and mitochondrial reads per cell filter out low-quality cells.
For single-cell DNA methylation, the count matrices are built
from cytosine summary tables or any custom-defined features of
interest. The methylation status of cytosines in CG, CH, or both
genomic contexts in every feature is counted and summarized in
the matrices. MethylStar (Shahryary et al., 2020) and EpiScanpy
(Danese et al., 2021) both have a built-in function for
quantifying the methylation reads. BPRmeth introduced general-
ized linear model (GLM) regression to quantify methylation
profiles. For scATAC-seq, the count matrices take mapped BAM
files or fragment files, like 10x Cell Ranger output, as input. There
are two mainstream ways to define the features. The first solution
is that the cells that pass read-level QC are merged to call peak
with software that is used in bulk, like MACS2 (Zhang et al.,
2008) or chromHMM (Ernst and Kellis, 2012). The peak file is
regarded as the region of interest and is used to count the reads in
each peak. This solution significantly reduces the feature number
that accelerates the downstream analysis but may lose the
information and heterogeneity of the rare cell population. Dr.
seq2 (Zhao et al., 2017), MAESTRO (Wang et al., 2020), scitools
(Sinnamon et al., 2019), APEC (Li et al., 2020a), and Signac
(Stuart et al., 2021) use the merged cell peak as features.
Another solution is to count the reads with a segmented genome
or so-called bin-based. SnapATAC (Fang et al., 2021) adopts this
strategy to capture the rare population but generates numerous
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features that need to be carefully filtered in the downstream
analysis. The count matrices for scATAC-seq are often binarized
because only double DNA strands are in a cell.

Imputation
As previously mentioned, the epigenome data from single cells is
extremely sparse, which impacts the sensitivity and accuracy of
downstream analysis for biological findings. Many methods have
been developed for predicting and fulfilling the missing values as
a result of bias from techniques.

For DNA methylation, predicting missing methylation states
and improving the incomplete CpG coverage is critical to
analyzing genome-wide methylation status. DeepCpG (Anger-
mueller et al., 2017) utilizes convolutional neural networks
(CNN) to learn the associations between DNA sequence features
and methylation states between neighboring CpG sites, both
within a cell and across cells. MOFA (Argelaguet et al., 2018)
and MOFA+ (Argelaguet et al., 2020) infer an interpretable low-
dimensional data representation with PCA to impute the missing
values and assays. MELISSA (Kapourani and Sanguinetti, 2019),

scMET (Kapourani et al., 2021), and Epiclomal (P. E. de Souza et
al., 2020) use Bayesian mixture models to leverage similar
methylation patterns in similar cells and impute missing values.

For scATAC-seq, ChromA (Gabitto et al., 2020) also adopts a
Bayesian statistical approach with hidden semi-Markov models
(HSMM) to overcome the sparsity from scATAC-seq data. ScOpen
integrates an unsupervised learning model based on a non-
negative matrix factorization (NMF), which does not require
making assumptions about the data distribution. AtacWorks (Lal
et al., 2021) uses the ResNet (residual neural network)
architecture to train a deep learning model from high-quality
bulk ATAC-seq datasets and predicts improved signal tracks at
the base-pair level and the accessible genomic locations with
noisy scATAC-seq tracks. SCATE (Ji et al., 2020b) integrates co-
activated peaks, similar cells, and publicly available bulk data to
predict the signals of each peak. These imputation methods also
enhance cell clustering performance.

For scHi-C, scHiCluster (Zhou et al., 2019a) considers
chromosome interactions as a network and uses the random
walk algorithm to propagate the smoothed interactions to tackle

Figure 6. Overview of singe-cell epigenome sequencing techniques. Single-cell epigenome sequencing is mainly performed at four levels, namely DNA modification, transcription
factor binding or histone modification, chromatin accessibility and chromatin three-dimensional structure. DNA modification mainly refers to DNA methylation, and the
sequencing methods for DNA modification are mainly based on restriction enzyme digestion and bisulfite conversion, which are shown in orange in the figure. The sequencing
methods for transcription factor binding and histone modification are shown in blue. The sequencing methods for chromatin accessibility are shown in red. The sequencing
methods for chromatin three-dimensional structure are shown in green.
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the sparsity of data. HiCImpute (Xie et al., 2022) considers the
spatial dependencies of 2D data structure and borrows informa-
tion from similar single cells and bulk data. scHiCEmbed (Liu and
Wang, 2022) borrows the scHiCluster’s result and uses graph
auto-encoders to learn node embeddings, which enables the
imputation of the chromosome contact matrices and topologi-
cally associating domains (TAD) detection. Higashi (Zhang et al.,
2022e) transforms the scHi-C data into a hypergraph and
imputes the scHi-C contact maps by predicting missing hyper-
edges within the hypergraph. Another imputation task for scHi-C
is to reconstruct the 3D genome structures. Si-C (Meng et al.,
2021) applies the Bayesian theory framework to reconstruct
genome 3D structures from scHi-C data. SCL (Zhu and Wang,
2019) regards the 3D structure of a chromosome as beads-on-a-
string and reconstructs the structure inside a 3D cubic lattice,
and uses 2D Gaussian imputation to estimate the propensity for
the bead-pairs without scHi-C contacts. Also, a data-driven
method, SIMBA3D (Rosenthal et al., 2019) first utilizes bulk Hi-C
data to aid in recovering the interactions missed in scHi-C contact
maps, then infers 3D chromosome structures with a generalized
Bayesian framework.

Clustering
Clustering similar cells together assigns identities to cells to better
find the rare cell population, understand the gene regulatory
patterns in specific cell states, and alleviate the noise signals. The
clustering algorithms, such as tSNE (Laurens and Hinton, 2008),
UMAP (McInnes et al., 2018), graph abstraction (Wolf et al.,
2019), Louvain clustering (Fortunato, 2009), Leiden clustering
(Guo et al., 2019), and diffusion pseudotime (Haghverdi et al.,
2016), which are used in single-cell transcriptomes, have been
applied to single-cell epigenomes too. ALLCools (Liu et al., 2021),
EpiScanpy (Danese et al., 2021), Signac (Stuart et al., 2021),
ArchR (Granja et al., 2021), SnapATAC (Fang et al., 2021), and
other analysis pipelines integrated these algorithms as built-in
functions to facilitate easy clustering of cells.

Although the clustering algorithms used in the single-cell
epigenome are similar to those used in single-cell transcriptome
data, single-cell epigenome data suffers from more sparse and
numerous features. To overcome sparsity, the imputation
methods mentioned in the last section can be used to improve
the clustering performance by fulfilling the missing features as
well as keeping the cell heterogeneity. scABC (Zamanighomi et
al., 2018) tries to alleviate the noise from cells with low
sequencing depth by implementing a weighted version of the K-
medoids clustering algorithm, which gives a low weight to the
low sequencing depth cells.

Another difference in clustering algorithms for single-cell
epigenome data from single-cell transcriptome data is the
reduction of features or dimensions. PCA is the most commonly
used method to reduce the dimensions of cluster features. Seurat
v3 (Stuart et al., 2019) incorporates latent semantic indexing
(LSI) on the scATAC-seq feature count matrix to reduce the
dimensionality. CisTopic (Bravo González-Blas et al., 2019) uses
LDA with a collapsed Gibbs sampler to identify the cis-regulatory
topics. It also facilitates the prediction of TF binding sites and
chromatin states. PeakVI (Ashuach et al., 2022) employs a deep
generative model to learn a probabilistic low-dimensional
representation. ScVAEBGM (Duan et al., 2022) integrates a
Variational Autoencoder (VAE) with a Bayesian Gaussian-
mixture model (BGM) to process scATAC-seq data. It takes

advantage of the BGM to estimate cluster numbers from data.
Besides only using the information from single-cell epigenome

data, borrowing the information from sequence features, bulk
datasets, and single-cell transcriptome datasets also helps with
the task of clustering. Some methods developed for multi-ome
experiments, such as MAPLE (Uzun et al., 2021), scAI (Jin et al.,
2020a), LIGER (Welch et al., 2019), scMC (Zhang and Nie,
2021), and scGCN (Song et al., 2021c), improved the clustering
performance by integration with scRNA-seq. chromVAR (Schep
et al., 2017), BROCKMAN (de Boer and Regev, 2018), scFAN (Fu
et al., 2020), and scBasset (Yuan and Kelley, 2022) consider the
sequence features, including motifs or specific k-mer, to reduce
the dimension from peak level to k-mer level or TF level.
Furthermore, CellWalkR (Przytycki and Pollard, 2022) inte-
grates scATAC-seq with cell type labels and bulk epigenetic data
to better illustrate the CREs active in specific cell types. SCRIP
(Dong et al., 2022) incorporates many bulk ChIP-seq data sets,
which also use peak set similarity to convert the feature matrix
from the peak count to TF count. These methods not only
enhance the clustering performance but also provide biological
information on which peaks or sequence features are important
to specific regulatory factors.

For scHi-C data, SCL and scHiCEmbed increase the clustering
performance by alleviating the sparsity of data with imputation.
Recently, scHiCStackL (Wu et al., 2022) proposed a computa-
tional framework by constructing a two-layer stacking ensemble
model for classifying cells and outperformed other methods on
the task of clustering cell types.

Cell type annotation and trajectory inference
Even while single-cell approaches allow for the parallel analysis
of genomic data among numerous cells, we usually need to know
the cell types or differentiation stages of each cluster. Annotating
cells using single-cell epigenome data typically requires inferring
the gene activity to assist in distinguishing cell types. This is in
contrast to scRNA-seq, which can identify cell states by gene
markers.

ArchR and MAESTRO both provide statistical models to infer
the gene score at the cluster level from scATAC-seq peaks. ArchR
incorporates the exponential decay model while accounting for
the expanded gene body and gene border. MAESTRO also uses an
exponential decay model but considers the exons of each gene
and removes the effects of nearby genes. Garnett borrows the
methods of calculating gene activity scores from Cicero (Pliner et
al., 2018) and applies their predefined markup language and pre-
trained classifier to scATAC-seq data. Besides using inferred gene
scores as markers to annotate cells, another way is to use well-
annotated bulk data as references. SCRAT (Ji et al., 2017)
compiles a regulome database consisting of ENCODE (de Souza,
2012) DNase-seq profiles from a wide variety of cell types to infer
the likely cell type of each cell. Moreover, MAESTRO not only
uses the data from the ENCODE project but also the data from the
Cistrome Data Browser (Mei et al., 2017; Zheng et al., 2019;
Zheng et al., 2020), which has collected the most comprehensive
previous public DNase-seq and ATAC-seq datasets.

The transcription of RNA takes time, therefore single-cell
epigenome data is more sensitive in capturing cell differentiation
events than scRNA-seq. To infer cellular trajectories, STREAM
(Chen et al., 2019b) first uses PCA to extract the most
informative features. Modified locally linear embedding (MLLE),
a non-linear dimensionality reduction technique, is then used to
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project cells into a low-dimensional space before the implementa-
tion of the Elastic Principal Graph. MIRA (Lynch et al., 2022)
uses topic modeling to infer cell states and represent those states
in an interpretable latent space, allowing for the inference of cell
state trees and the identification of important regulators of
branch point fate decisions. Also, many pipeline tools, like
EpiScanpy and Signac, incorporate PAGA (Wolf et al., 2019) or
Monocle (Trapnell et al., 2014) to infer the cell trajectories.
However, understanding the biological system as well as the
underlying assumptions is necessary when modeling trajectories
using single-cell data. Therefore, to interpret the results of
trajectories, well-annotated clustering is often a requirement.

Differential analysis and features selection
With differential analysis, it is crucial to determine which
features are related to particular cell states. This approach
connects cell states and phenotypes to genomic regions or CREs.
A recent report claimed that the Wilcoxon rank-sum test
outperforms other differential test methods in large-sample-size
data because it does not require any assumptions (Li et al.,
2022j). In fact, the Wilcoxon rank-sum test is the most
commonly used test method for detecting differential expression
genes in the majority of pipeline tools.

Although it is not difficult to perform the differential analysis
with current tools, a tricky thing is how to define the useful
features of single-cell epigenome data. Bin-based methods and
peak-based methods are adopted for scATAC-seq. scMET
aggregates the input data within regions, such as promoter
regions or enhancers. These genome features rely on the
aggregation of individual regions. Recently, a deep generative
model PeakVI infers a representation for each cell in high-
dimensional, which enables statistically robust inference of
single-region-level differential accessibility and cell state annota-
tion.

Gene regulation inference
Inferring TF activity using single-cell epigenomics data is an
intriguing potential application that provides clues on how
epigenetics influences gene expression and cell phenotypes.
ChromVAR, scFAN, scBasset, TRIPOD (Jiang et al., 2022b),
and SCRIP all support inferring TF activity at the single-cell level
from scATAC-seq data. ChromVAR infers TF activity by
estimating the gain or loss of accessibility within peaks sharing
the same TF motifs. scFAN pre-trains deep learning-based models
on genome-wide bulk ATAC-seq, DNA sequence, and ChIP-seq
data and applies the model to single-cell ATAC-seq to predict TF
binding in individual cells. scBasset introduces CNNs to leverage
the DNA sequence information underlying scATAC-seq peaks to
achieve TF activity inference. TRIPOD combines scRNA-seq,
scATAC-seq, and DNA sequence features to infer the TF activity
related to gene expression associations, accounting for literature-
based knowledge. However, the DNA sequence features, such as
motifs, lose the cell-type-specific information of TFs and cannot
distinguish between TFs with similar motifs, such as the GATA
family. Recently, SCRIP incorporated thousands of bulk-level
ChIP-seq datasets and scATAC-seq to infer the TF activity based
on the peak set similarity, which successfully distinguished the
similar motif TF activity at the single-cell level.

Although scATAC-seq identifies the open chromatin regions as
CREs, how the CREs link distal regulatory elements with their
target genes is also a key question in gene regulation. Cicero

samples and aggregates similar cells to quantify correlations
between putative CREs and links CREs to target genes based on
the correlation using a graphical lasso model. To alleviate
uncorrelated technology noise and false positive results in Cicero,
JRIM (Dong and Zhang, 2021) uses the group lasso penalty to
find similar patterns of sparsity across all the regulatory networks
to reconstruct the cis-regulatory interaction networks. To
accurately identify the loci of key CREs of different cell types,
scEpiLock (Gong et al., 2022) adopts a CNN model to detect the
chromatin accessibility regions and refine the peak boundary
using gradient-weighted class activation mapping (Grad-CAM).
Similarly, DIRECT-NET (Zhang et al., 2022c) adopts eXtreme
Gradient Boosting (XGBoost) to identify functional CREs and infer
the TF binding sites with known motif patterns. The aforemen-
tioned methods successfully link the CREs to target genes,
DeepTFni (Li et al., 2022d) implements a GNN with a variational
graph auto-encoder (VGAE) to infer TF regulatory networks,
which can show the relationship between TFs and TFs. SMGR
(Song et al., 2022b) takes both scRNA-seq and scATAC-seq as
input and utilizes a generalized linear regression model to identify
the latent representation of consistently expressed genes and
peaks, as well as identify co-regulatory mechanisms.

ScHi-C allows for exploring gene regulation patterns in a 3D
manner at the single-cell level. Topologically associating
domains (TAD) segment the genome based on the 3D genome
structure. There are more DNA-DNA interactions within TADs
than between one TAD and other TADs. deTOKI (Li et al., 2021c)
can predict TAD-like domain structures at the single-cell level
with NMF from sparse scHi-C data. Chromatin loops are smaller
structures that link CREs to target genes physically. SnapHiC (Yu
et al., 2021) and SnapHiC2 (Li et al., 2022i) enable identifying
chromatin loops at 10 kb resolution with a random walk with
restart (RWR) algorithm from scHi-C data.

Multi-function analysis pipelines
The selection and organization of these tools to effectively extract
the underlying information from data have become a challenge
with the development of numerous computational approaches
for single-cell epigenomic data. For example, Chen et al. (2019c)
benchmarked 10 computational methods that were developed for
scATAC-seq and concluded that different methods have their
advantages and limitations. Multi-function pipelines provide one-
shot solutions with parameters based on best practices, freeing
biologists from menial coding and parameter tuning so that they
can focus on the biological results.

Dr.seq2, SCRAT, Scasat, Destin, scitools, scATAC-pro, EpiS-
canpy, Signac, and SnapATAC are designed especially for single-
cell chromatin accessibility or methylome accessibility. scHiC-
Tools is a pipeline that is designed for scHi-C data. They include
the functions of basic qualification, filtering low-quality cells or
features, motif analysis, clustering, differential analysis, and
visualization. Since many techniques have been developed for
parallelly profiling the transcriptome and epigenome, many
computational methods and pipelines have been developed for
integration. Seurat v3, APEC, MAESTRO, scAI, ArchR, and
ALLCools provide the functions that are mentioned above as well
as functions for integration of the epigenome data and
transcriptome to better interpret the gene regulation mechanism.

Besides these computational methods, g-chromVAR (Ulirsch et
al., 2019) uses fine-mapped variant posterior probabilities and
quantitative measurements of regulatory activity to measure the
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enrichment of regulatory variants in each cell state. Methylsca-
per (Knight et al., 2021) is specifically developed for visualiza-
tions of single-cell DNA methylation and chromatin accessibility
patterns. Several integration methods have been developed to
analyze scRNA-seq and single-cell epigenome data together.
These include MATCHER (Welch et al., 2017), coupled NMF
(Duren et al., 2018), coupleCoC (Zeng et al., 2021), coupleCoC+
(Zeng and Lin, 2021), scAMACE (Wangwu et al., 2021), epiConv
(Lin and Zhang, 2022), scMVP (Li et al., 2022b), scREG (Duren et
al., 2022), and MIRA. These computational methods for
integration provide a more thorough and multifaceted perspec-
tive in which to understand the gene regulatory process. Table S7
in Supporting Information lists the programming language, key
features, limitations, and benchmark dataset that were applied in
the original analysis of the reviewed computational approaches
(Figure 7).

Applications of single-cell epigenomes

Single-cell technologies provide unprecedented opportunities to
investigate a variety of biological processes and gene regulation
patterns. Applying these single-cell technologies to various
biological systems sheds light on discovering the cell differentia-
tion events and mechanisms of disease occurrence at the single-
cell level. These single-cell epigenome sequencing methods have
been adopted in many fields. Here, we reviewed their applications
in early embryonic development, cancer, and neurobiology.

Early embryonic development
During gamete development and the early stages of embryogen-
esis, cells undergo significant and drastic alterations and
reprogramming in the epigenome, which causes cell differentia-
tion and diverse phenotypes of cells. Therefore, embryonic stem
cells are widely used as material in the development of single-cell
epigenomic sequencing techniques.

Zhu et al. (2018a) applied scWGBS to human preimplantation
embryos. They discovered three waves of global demethylation in
mouse preimplantation embryos, indicating that the dynamic
balance between global demethylation and drastic remethylation
occurs during preimplantation development. Later, the same
group, Li et al. (2018a) applied scCOOL-seq to six stages of
human preimplantation development and discovered that the
pluripotency master TF binding regions and proximal and distal
nucleosome-depleted regions were primarily enriched in the
genomic regions showing the largest changes in chromatin
accessibility. Additionally, they discovered that, compared with
mice, human zygotes had reduced access to the maternal
genome’s chromatin in oocytes and had a delayed balance
between parental alleles until the 4-cell stage, which indicated
the species-specific features of chromatin accessibility. Argela-
guet et al. (2019) performed scNMT-seq on the stages of mouse
gastrulation. They found that cells committed to mesoderm and
endoderm undergo widespread coordinated epigenetic rearran-
gements at enhancer marks, driven by ten-eleven translocation
(TET)-mediated demethylation and a concomitant increase in
chromatin accessibility. In addition, they found that while in the
early epiblast, the methylation and accessibility landscape of
ectodermal cells had already been established.

These studies shed light on how the epigenome influences
cellular differentiation and lineage commitment. In the future,
investigations into cell populations using single-cell multi-omics

techniques give us the chance to understand the process of
orchestrated epigenomic reprogramming, which has the poten-
tial to change our understanding of cell fate decisions and benefit
the field of stem cell biology.

Tumor immunology
Malignant and non-malignant cells coexist in a tumor, which is a
highly heterogeneous structure. Both types of cells play critical
roles in the development of cancer. Methods for single-cell
epigenome sequencing are being developed to help distinguish
the non-genetic factors that contribute to the course of cancer
from the complexity of tumors.

Satpathy et al. (2019) applied scATAC-seq on primary tumor
biopsies from basal cell carcinoma (BCC) patients receiving PD-1
blockade treatment. They investigated chromatin regulators of
therapy-responsive T cell subsets and observed a common
regulatory pathway that controls the development of CD4+ T
follicular helper cells and intratumoral CD8+ T cell exhaustion.
Not only are immune cells investigated by single-cell epigenome
sequencing, but also malignant cells show heterogeneities in
TME. Meir et al. (2020) employed scRNA-seq and methylome
analysis to show that various cancer cell types had clonally stable
epigenetic memory. Additionally, they discovered DNA methyla-
tion landscapes reflect a separate clock-like methylation loss
mechanism while correlating with epithelial-mesenchymal
transition (EMT) identities that are identified by transcriptome
analysis in clonal colon cancer cell populations. Wu et al.
(2021c) employed scCUT&Tag to characterize H3K27me3 before
and after therapy in a patient with a brain tumor. They profiled a
brain tumor H3K27me3 in the primary sample and after the
treatment and discovered various cell types in the TME and
heterogeneity in the polycomb group activity.

Epigenetic mechanisms are critical for the interactions between
tumor cells and immune cells. Understanding the fundamental
processes of epigenetic modifications in immune and tumor cells
paves the way for the creation of drugs and immunotherapy
techniques.

Neurobiology
Understanding both the normal functions of the brain and the
mechanisms of dysfunction and disease requires a better under-
standing of cellular composition. Lake et al. (2018) detected the
transposon hypersensitive sites in the human adult brain at the
single-cell level. They identified the cell subpopulations in the
human adult cortex and cerebellar hemisphere and used
epigenomic data to link genetic risk variants with cell-type-
specific cCREs. In a cohort of cognitively healthy people, Corces et
al. (2020) examined the single-cell chromatin accessibility
landscapes and three-dimensional chromatin interactions of
various adult brain regions. They created a machine-learning
classifier to include this multi-omic framework and predicted
several functional SNPs for Parkinson’s and Alzheimer’s disease.
Yang et al. (2023a) profiled single nucleus-accessible chromatin
landscape of the pig hippocampus at different developmental
stages and revealed notable enrichment of transposable elements
in cell type-specific accessible chromatin regions. This study helps
deepen our understanding of human neurodegenerative diseases.
Future research on the single-cell level will be fascinating in
examining dynamic regulations of the epigenome, specifically
alterations to the genome during learning and memory that are
reliant on neuronal activity.
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Summary

In this chapter, we summarized the techniques, computational
methods, and applications for single-cell epigenome sequencing.

The recent availability of single-cell sequencing technology has
expanded the scope of study into biological processes and
diseases. These approaches have previously shown their effec-
tiveness in illuminating the parts of complex tissues and

Figure 7. Overview of the major steps for single-cell epigenomic analysis and related computation methods. The analysis of single-cell epigenetic data can be roughly divided into
6 parts as shown in the figure. First, the data needs to be preprocessed. The preprocessing part includes removing sequencing adapters, sequence alignment, quality control, data
quantification, peak calling and building feature matrix. Due to the extreme sparsity of single-cell epigenetic data, there are currently methods based on Bayesian inference and
machine learning to impute missing data. After that, the data is used for dimensionality reduction and clustering. After clustering, different cell types are annotated and
pseudotime analysis can be performed. Then, based on different cell types, different genomic features of different cells can be identified. For studying gene transcription regulation,
transcription factor binding activity, cis-regulatory elements regulation and TAD regions and loops identification can be inferred. There are also pipelines that integrate multiple
functions for batch processing data and output multiple results. Among them, preprocessing, clustering, reporting and other functions are common in all pipelines, while
imputation, cell type annotation, differential analysis and gene regulatory network inference are optional functions in different pipelines. In the figure, methods marked in brown
are specifically for processing DNA methylation data, methods marked in red are specifically for processing chromatin accessibility data, methods marked in green are specifically
for processing three-dimensional genome data and methods marked in black are applicable to two or more types of data.
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revealing novel insights, despite some limitations. Future
sequencing technologies with higher coverage and sensitivity,
as well as dedicated, advanced, and well-developed computa-
tional methodologies, promise to usher in a new era of under-
standing biology and pave the way for the treatment of diseases.

Chapter 4 Single-cell proteomics technology based
on mass spectrometry

Although proteome performed in bulk samples has matured and
been widespreadly applied in scientific research and clinical
medicine, numerous new challenges have arisen when the initial
sample size is slashed to hundreds of cells or even one cell. Since
the total protein in one somatic cell is only about 100–200 pg
(Wiśniewski et al., 2014), any loss can have an immeasurable
impact, and also put more stringent requirements on sensitivity
and accuracy of detection methods.

Based on the detection principles, today, single-cell proteomic
(SCP) methods can be classified into the following categories: (i)
antibody-based assays, such as cytometry by time of flight
(CyTOF) (Bandura et al., 2009; Bendall et al., 2011), single-cell
western blotting (Hughes et al., 2014b), microengraving (Han et
al., 2010; Love et al., 2006; Schubert et al., 2016), (ii) PCR-
sequencing based assays, such as proseek multiplex (Assarsson et
al., 2014), CITE-seq (Stoeckius et al., 2017), REAP-seq (Peterson
et al., 2017), (iii) mass spectrometry (MS) based assays, such as
nanoPOTS (nanodroplet processing in one pot for trace samples)
(Zhu et al., 2018d; Zhu et al., 2018e), SCoPE2 (Specht et al.,
2021). The antibody-based and sequencing-based assays were
developed earlier and have made unignorable contributions,
which have been well reviewed before (Labib and Kelley, 2020;
Levy and Slavov, 2018; Liu et al., 2020a; Xie and Ding, 2022).
However, the former was limited by the specificity and the
availability of antibodies, while the latter did not directly detect
proteins, and both assays were limited in the number of proteins
that could be analyzed at a time. Mass spectrometry has been the
mainstream analysis tool in bulk-size proteomics due to its
advantages of both high accuracy and high throughput. More
importantly, unlike the hypothesis-oriented antibody-based
methods, MS-based analysis method is discovery-oriented which
can play a unique role in biological research. With the progress of
mass spectrometry and the innovation of preparation process in
recent years, single-cell proteomics based on MS has shown a
blowout.

Here we focus on the state-of-the-art MS-based single-cell
proteomic tools over the last 5 years, discuss the outstanding
innovative points from cell isolation to sample preparation and
MS detection, and prospect the future development directions.

MS-based SCP workflow

The workflow of conventional bulk-size proteomics has been well
established, but when dealing with the single-cell, each simple
step needs to be well optimized to recover as much information as
possible from the trace protein. Although the ways of imple-
mentation vary, the workflows of MS-based SCP include three
main steps: single-cell isolation, sample preparation, and MS
analysis.

Single-cell isolation
Isolation of single-cell is a unique requirement in SCP workflows,

its accuracy and efficiency lay the foundation for the entire SCP
workflow. How to precisely pick the interesting cell types from a
complicated cell mixture, and how to maximize cell activity and
minimize the impact on the molecular level are the great
challenges in this step. Among the existing SCP tools, isolation of
single-cell was mostly achieved through manual cell picking,
FACS, microfluidic, lab-on-a-chip devices (Gross et al., 2015), or
LCM (Mund et al., 2022a).

Sample preparation
Cell lysis and protein digestion are the essential preparation steps
for both bulk-size and single-cell proteomic workflows. Since the
protein amount contained in one cell is extremely small, any step
that may be negligible for bulk-size proteomics can be fatal to the
SCP. Even the nonspecific adsorption during sample transfer
steps can cause massive protein and peptide loss (Sun and
Kumar, 2022; Wu et al., 2019b). Across the existing SCP tools,
the improvement strategies can be summarized into (i) simplify-
ing the preparation steps, (ii) minimizing the sample volume, and
(iii) automating the preparation.

In bulk-size proteomics, harsh chemical environments such as
sodium dodecyl sulfonate (SDS) and urea were required for
millions of cell lysis, which need complex buffer exchange steps
followed to adapt the enzymatic processes and liquid chromato-
graphy-mass spectrometry (LC-MS) analysis. To avoid loss during
these steps, most SCP tools chose MS compatible lysis reagents
such as DDM (n-Dodecyl-β-D-Maltopyranoside), RapiGest, tri-
fluoroethanol (TFE) (Ctortecka et al., 2022a; Li et al., 2018b;
Schoof et al., 2021; Wang et al., 2022d; Williams et al., 2020;
Zhu et al., 2018c; Zhu et al., 2018d), and supplemented with
heating or sonication to promote cell lysis. Slavov’s group
(Specht et al., 2021) developed a sample preparation method
called mPOP which can lyse mammalian cells in pure water by a
freeze-heat cycle (−80°C to 90°C), completely avoiding the
introduction of redundant chemical reagents. Moreover, almost
all SCP tools took the one-pot preparation to avoid loss during
sample transfer, or even completing overall preparation in highly
integrated microfluidic chips or capillary, such as iPAD-1 (Shao
et al., 2018), iProChip (Gebreyesus et al., 2022).

Decreasing sample volume is another solution to the loss of
nonspecific adsorption, which can increase sample concentration
meanwhile. Compared with bulk-size proteomics, the protein
amount in SCP has a thousand-fold decrease, but the sample
volume has not decreased to the same extent, leading to a great
reduction of protein concentration. When the concentration is
low enough, the tiny amount of protein in the large volume of
solution can cause “swimming pool effect” that dramatically
reduces the reaction efficiency of enzyme or label reagent with
proteins or peptides. Increasing the concentration of enzyme or
label reagent can partially alleviate this effect, but an excess of
the enzyme or label reagent relative to the protein or peptide level
will inevitably cause signal interference in downstream analysis
and increase costs exponentially. Therefore, minimization of
sample volume can greatly solve the interference caused by
insufficient sample concentration and significantly enhance SCP
performance. Most recent SCP tools did not exceed the initial
volume of 1 μL in the sample preparation step. With the help of
capillary-based sampling method or picoliter-level liquid dispen-
sing technology, the initial volume can be controlled to as low as
2 or 8 nL, and the overall reaction system volume is not greater
than 50 nL during the entire preparation process (Leduc et al.,
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2022). When the sample volume is only a few microliters or even
tens of nanoliters, how to avoid liquid evaporation during the
preparation process becomes a new problem. Precise control of
temperature and humidity throughout the reaction environment
is necessary. Oil or water-insoluble organic solvent is also used to
encapsulate protein droplets to prevent volatilization. For
example, OAD (nanoliter-scale oil-air-droplet) used fluorinated
oil FC40 to cover the cell sample (Li et al., 2018b), proteoCHIP
chose hexadecane which solidified at preparation temperature
(Ctortecka et al., 2022a), and WinO designed the entire
preparation process in the droplet coated with ethyl acetate
(Masuda et al., 2022).

As the sample size decreases, the perturbations caused by
human manipulation of the entire SCP workflow are further
amplified. To improve throughput and micromanipulation
accuracy, some laboratories have developed specific robots to
complete the integrated preparation process, such as nanoPOTS
dispensing robot (Zhu et al., 2018d) and SODA (the sequential
operation droplet array) system used in OAD (Li et al., 2018b;
Zhu et al., 2013), as well as other SCP tools employing
commercial robotic workstations to cover part or whole
preparation steps. The automation of SCP sample preparation
has been well reviewed by Alexovič et al. (2021). Automation is
an inevitable trend to further improve throughput and reprodu-
cibility so that single-cell proteomes can be truly applied to large-
scale investigations or clinical studies.

MS analysis
The complexity of proteins has always been one of the biggest
barriers in proteomic research. When MS-based proteomics is
applied to the single-cell field, the extremely tiny sample size
presents new challenges. The types of protein can reach over
10,000 with different expression levels and different physico-
chemical properties in one cell (Zhang et al., 2013). How to
minimize the loss during MS analysis process without reducing
the resolution of complex samples, and how to improve the
sensitivity and accuracy of detection meanwhile are huge
problems that need to be considered from three aspects: analysis
strategy, injection method, and chromatography-mass spectro-
metry performance.

(1) Analysis strategy
Isobaric label-based quantification, such as tandem mass tags

(TMT), has been one of the most popular protein quantification
methods. TMT label-based bulk-size proteomics has been shown
to result in a 15%–20% increase in proteins identified with
higher quantitative accuracy (Muntel et al., 2019). Slavov’s
group (Budnik et al., 2018) developed the SCoPE-MS (single-cell
ProtEomics by mass spectrometry) which pioneered the applica-
tion of TMT to single-cell proteomics. They introduced the idea of
“carrier channel” which consisted of about two hundred cells to
share most of the loss from single-cell channels caused by non-
specific adsorption. Meanwhile, the carrier channel provided the
most signal for MS analysis, reducing the required sensitivity 10-
to 100-fold. Several SCP tools have been developed subsequently
based on isobaric labeling, including SCoPE2, WinO (Masuda et
al., 2022; Specht et al., 2021). The improvement in MS analysis
throughput is another advantage of isobaric labeling SCP tools
that cannot be ignored. Labeled with the TMTpro18-plex, one
injection can analyze more than 14 single cells (Leduc et al.,
2022). The appropriate number of cells used in carrier channel,
however, is still debatable. Cheung et al. (2021) revealed that

high levels of carrier channels may adversely affect quantitative
accuracy. With the fast development of mass spectrometer,
higher detection sensitivity helped reduce the number of cells in
the carrier channel. Using 25 cells as carrier channels or
eliminating carrier channels, proteoCHIP identified an average of
1,812 or 1,477 proteins from one mammalian somatic cell
respectively (Ctortecka et al., 2022a).

The label-free SCP tools that analyze one cell at a time are the
equally important development direction in the field of single-cell
proteomics. Data-independent acquisition (DIA) is becoming
mainstream in bulk-sized proteomics because of its accurate
quantification with low missing values and high analytical
depth. With the generation of a project-specific library, DIA mode
can help label-free proteomics achieve a much higher analytical
depth. DIA mode has begun to be applied to label-free SCP tools
recently (Brunner et al., 2022; Gebreyesus et al., 2022; Wang et
al., 2022d). Compared with the most data-dependent acquisition
(DDA)-based label-free SCP work which identified about 1,000
proteins, DIA mode helped identified protein numbers rise up to
more than 2,000 in one single cell. Using the same SCP workflow
to detect the same type of cells, DIA mode can increase the
protein identification number of one single cell by up to 188%
compared with is not compatible with the common perception,
some groups have already tried to develop the multiplexDIA
method such as DIA-TMT and plexDIA to improve data integrity
and reliability without reducing throughput (Ctortecka et al.,
2022b; Derks et al., 2022).

(2) Injection method
Despite the advantages of minimizing sample volume, the

nanoliter-level sample droplet is not compatible with most
commercial LC autosamplers. To solve this problem, nanoPOTS
group developed the complicated manual loading procedures
that aspirated nanodroplet samples to a section of capillary, then
eluted the sample onto a solid-phase extraction (SPE) column,
and finally inserted the SPE column with an analytical column
for gradient separation and MS detection (Zhu et al., 2018d).
These procedures are not only complex and time-consuming but
also highly dependent on the proficiency of the operators. As an
improvement, a nanoliter-scale autosampler integrating nano-
POTS-based sample preparation with automated LC-MS plat-
forms was developed, which enhanced the analysis throughput
based on label-free nanoPOTS from 6 cells to 24 cells one day
(Specht et al., 2018). Integration of sample preparation with LC-
MS analysis has been an important development trend of SCP
tools for its robustness and high-throughput. Some integrated
tools were based on the self-development autosamplers such as
autoPOTS (Specht et al., 2018; Woo et al., 2021) and self-
aligning monolithic (SAM) devices (Li et al., 2018b; Wang et al.,
2022d), while others were developed based on a high-integrated
microfluidic chip or device such as proteoCHIP (Ctortecka et al.,
2022a), and iPAD-1 (Shao et al., 2018). Although most of the
integrated SCP methods require customized equipment which
limits their accessibility, from the perspective of minimizing the
loss during sample loading and optimizing the detection effect,
the integration of sample preparation and LC-MS analysis is still
an inevitable road.

(3) Chromatography-mass spectrometry performance
The overall sensitivity of the chromatography-mass spectro-

metry system is crucial for the analysis of extremely tiny amounts
of peptide samples. Decreasing the chromatographic flow rate and
narrowing separation columns’ inner diameter are widely used to
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enhance the separation performance and ionization efficiency.
Most bulk-size proteomics conventionally uses the 75 μm i.d.
reversed-phase LC columns which operate at 300 nL min−1.
Zhu et al. have demonstrated that using 30 μm i.d. columns
operating at 50 nL min−1 can remarkably improve the proteome
coverage and have applied to most nanoPOTS-relative work
(Specht et al., 2018; Woo et al., 2021; Zhu et al., 2018f).
Although narrower columns and lower flow rate were also tried,
the challenges in column package and longer chromatographic
gradients limited routine use. A variety of prospective LC
technologies also have been explored to improve separation
efficiency and have been applied in low-input proteomics,
including capillary electrophoresis (Lombard-Banek et al.,
2016; Lombard-Banek et al., 2019), porous layer open tubular
(PLOT) columns (Li et al., 2015), monolithic capillary columns
(Greguš et al., 2020), micropillar array columns (μPAC)
(Stadlmann et al., 2019). It is worth looking forward to their
applications in the SCP field with advanced mass spectrometry.

Mass spectrometry has undergone substantial development in
the past decades, reflected in the improvement of data acquisition
speed, detection limit, resolution, and accuracy. Orbitrap series
mass spectrometers are the most commonly used in both bulk-
size and single-cell proteomics because of their outstanding
performance in both resolution and accuracy. With updates to
Orbitrap platforms, the protein information available from single
cells has increased significantly. For example, when analyzing
2 ng peptide sample, nearly 3-fold unique peptides can be
identified by an Orbitrap Fusion Lumos compared with an LTQ
Orbitrap XL mass spectrometer. Further, comparing the Orbitrap
Fusion Lumos with a newer Orbitrap Eclipse mass spectrometer,
the protein coverage from one single cell increased by about 20%
(Kelly, 2020). Another notable breakthrough in mass spectro-
metry is the introduction of ion mobility which added a new
separation dimension and resulted in the transition from 3D-
Proteomics (retention time, m/z, and ion intensity) into 4D-
Proteomics. TimsTOF series mass spectrometers are representa-
tive and have been applied in several recent SCP tools such as
PiSPA (Wang et al., 2022d), UE-SCP (Gu et al., 2022b), and T-
SCP (Brunner et al., 2022). Combined with parallel accumula-
tion-serial fragmentation (PASEF), timsTOF can achieve almost
100% ion utilization and more than 10-fold increase in
sensitivity (Meier et al., 2018). FAIMS ProTM interface is another
popular technique to combine ion mobility with mass spectro-
metry and can be used in conjunction with Orbitrap series mass
spectrometers (Shvartsburg et al., 2006). Applied in the SCP field,
field asymmetric ion mobility spectrometry (FAIMS) has been
shown to increase protein coverage by 2.3-fold in a single HeLa
cell (Cong et al., 2020).

State-of-the-art SCP tools

Recently a variety of SCP tools have sprung up. With the
comprehensive advance in cell isolation, sample preparation, and
MS analysis mentioned above, the number of proteins identified
from one cell has jumped from about 100 to more than 3,000
nowadays. The mainstream bulk-size MS-based proteomics
performs complex sample preparation and off-line sample loading
steps separately. The single-cell proteomics, however, developed
a series of integrated tools to reduce the loss of tracing peptides
during pretreatment and sample loading. As a double-edged
sword, integrated tools usually require specially customized

equipment which limits their promotion and application among
other laboratories. Many unintegrated and easy-to-use tools have
been developed at the same time (Table 2).

Integrated tools
Chen et al. (2015b) established an integrated proteome analysis
device called iPAD-100 in 2015 which completed the whole
progress from cell preparation to injection sample into the LC-MS
system. iPAD-100 can accomplish cell lysis and protein digestion
in a fused-silica capillary simultaneously in only 1 h and robustly
identify 635 proteins from 100 living DLD-1 cells. As an updated
version, iPAD-1 chose the 22 μm o.d. capillary for single-cell
picking and sample preparation, reduced the reactor volume to
2 nL, and compressed the preparation time to 30 min (Shao et
al., 2018) (Figure 8A). With further optimized ultrasensitive
nano-LC-MS/MS system, a maximum of 328 proteins were
identified from one Hela cell.

Li et al. (2018b) designed a droplet-based microfluidics chip
called OAD chip which is composed of 4-layer cube structure
(Figure 8B). With the isolation by oil in the isolation layer and oil
layer, about 100 nL sample droplet can be encapsulated in
droplet layer to avoid evaporation and contamination. The entire
preparation process took place in the droplet layer which was
manipulated through a 3D printing fabricated SAM device with
cylinder geometry. The enzymolytic peptide sample was then
directly loaded into the nanoliter-level separation column in a
pressured manner. With this approach, 51 and 355 proteins
were identified in one Hela cell and one mouse oocyte
respectively. Recently, Dang et al. (2023) applied OAD to human
pre-implantation embryos and achieved a median of 3,736
protein identification from single 2-cell stage human embryos.

NanoPOTS is another microfluidics chip based nanodroplet
processing platform that was developed by Zhu et al. (2018d).
NanoPOTS chip is composed of a nanowell-patterned glass slide,
a glass spacer, and a membrane-coated glass slide (Figure 8C).
The surface area of each nanowell was only 0.8 mm2, which
greatly reduced the nonspecific adsorption loss on the reaction
vessel surface. Interfacing with FACS made nanoPOTS become
an excellent and robust SCP tool that can identify 670 proteins
from one HeLa cell when employed the MaxQuant match
between run (MBR) algorithm (Zhu et al., 2018c). Although
the sample preparation was accomplished in the highly
integrated chip, the early nanoPOTS still needed a complicated
system to load sample to LC-MS manually. An autosampler was
developed to solve this problem soon afterward and improve the
throughput from 6 to 24 cells per day in label-free experiments
(Specht et al., 2018). TMT label was also introduced to
nanoPOTS and an improved boosting to amplify signal with
isobaric labeling (iBASIL) strategy was put forward (Tsai et al.,
2020). 1,424 proteins could be identified from a single cell by
using TMT10plex label and a boost channel containing 10 ng
peptides. The throughput was further increased to 77 cells per
day. Recently, nested nanoPOTS (N2) chip derived from classical
nanoPOTS was developed (Woo et al., 2021). It was designed
with tighter nanowell array and increased the cell number that
can be analyzed in one chip to 243 (Figure 8D). By further
reducing the nanowell volume to about 30 nL, the protein
recovery was increased by 230%.

ProteoCHIP is also a highly integrated SCP tool that was
designed with two parts: (i) a nanowell layer that included 12
fields each containing 16 nanowells, (ii) a funnel layer that can
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pool samples from the same TMT set via centrifugation and
online connect to LC autosampler (Figure 8E) (Ctortecka et al.,
2022a). proteoCHIP eliminated all manual sample handling
steps and resulted in a high-throughput and high sensitivity
analysis, which can identify an average of 1,812 or 1,477
proteins from one mammalian somatic cell using 25 cells as
carrier channels or eliminating carrier channels respectively.
This was the first attempt to eliminate carrier channels in TMT
label-based SCP and has achieved remarkable performance.

Unlike most microfluidic chips used in SCP were open,
Gebreyesus et al. (2022) designed a confined, highly integrated
microfluidic chip called iProChip (Figure 8F). This chip was
composed of 9 units and each of them contained a cell capture,
imaging and lysis chamber, a protein reduction, alkylation and
digestion vessel, and a peptide desalting column. Size-based
single-cell capture was achieved by the wedge-shaped twin pillar

arrays and the following preparation process can be accom-
plished online in the chip. With the optimized DIA-MS analysis,
1,160 proteins were identified from one PC-9 cell. SciProChip
was derived from iProChip and dedicated to 20-plex processing of
single cells. It showed an improvement in cell usage efficiency of
~40% and in protein coverage of 1.53-fold. From one PC-9 cell,
SciProChip-DIA can identify about 1,500 proteins.

Recently, Wang et al. (2022d) developed the pick-up single-cell
proteomic analysis (PiSPA) workflow which accomplished single-
cell sorting, multi-step preparation and injection of peptides to
the LC column integrally by the automated pick-up operation
system based on capillary probes. In order to avoid losses of
sample transfer, this workflow directly dispensed single cells into
a commercial insert tube, using the conical bottom tip of the
insert tubes as the nanoliter microreactors for sample pretreat-
ment of single cells (Figure 8G). These insert tubes coupled with

Table 2. Recent SCP tools

SCP tools Customized
equipment Label Cell type Isolation

method MS approach Pretreatment
throughput MS throughput

Average identified
protein number

per cell

Depth of
proteome
coverage

Reference

iPAD-1 Need label free HeLa capillary-based
isolation LC-MS/MS 1 cell per run 24 cells

per day 271 406 (n=10) (Shao et al.,
2018)

OAD Need label free HeLa SODA LC-MS/MS 1 cell per run 4 cells
per day 51 – (Li et al.,

2018b)

nanoPOTS

Need label free HeLa FACS LC-MS/MS 27 cells per
run – 669 – (Zhu et al.,

2018c)

Need

label free MCF10A

FACS LC-MS/MS –

24 cells
per day 764 1,093 (n=10)

(Williams et
al., 2020)TMT10-plex

labelled
MOLM-14,
K562, CMK

77 cells
per day 1,281 2,558 (n=152)

autoPOTS No need label free HeLa FACS LC-MS/MS – 10 cells
per day 301 – (Liang et al.,

2021c)

nested nano-
POTS Need TMT16-plex

labelled
C10, RAW,

SVEC cellenONE LC-MS/MS 243 cells per
run

108 cells
per day 1,716 2,457 (n=108) (Woo et al.,

2021)

proteoCHIP Need TMT16-plex
labelled

HeLa,
HEK-293 cellenONE LC-FAIMS-MS/

MS
592 cells per

run
384 cells
per day

1,940
(20× carrier)

3,674 (n=276) (Ctortecka et
al., 2022a)1,598

(no-carrier)

iProChip Need label free MEC-1 chip device LC-MS/MS 9 cell per run 9 cells per day 455 –
(Gebreyesus et

al., 2022)SciProChip Need label free PC-9 – – 20 cell
per run

16 cells
per day 1,500 1,995 (n=10)

PiSPA Need label free A549 SODA LC-TIMS-TOF 1 cell per run – 3,008 5,093 (n=37) (Wang et al.,
2022d)

SCoPE No need TMT10-plex
labelled Jurkat, U-937 manual

picking LC-MS/MS 8 cells per run 48 cells
per day – 767 (n=24) (Budnik et al.,

2018)

SCoPE2 No need TMT16-plex
labelled

monocyte and
macrophage

cells
FACS LC-MS/MS – 200 cells

per day
1,000 3,042

(n=1,490)
(Specht et al.,

2021)

nPOP-SCoPE2 Need TMT18-plex
labelled

U-937,
WM989 cellenONE LC-MS/MS 2,016 cells

per run
212 cells
per day 997 2,844

(n=1,543)
(Leduc et al.,

2022)

A multiplexed
scMS workflow No need TMT16-plex

labelled OCI-AML8227 FACS LC-FAIMS-MS/
MS

336 cells
per run

112 cells
per day 987 2,723

(n=2,050)
(Schoof et al.,

2021)

UE-SCP No need TMT6-plex
labelled

HeLa,
HEK-293T cellenONE LC-TIMS-TOF 308 cells

per run
96 cells
per day 2,249 4,230 (n=128) (Gu et al.,

2022b)

Mad-CASP No need label free HeLa FACS LC-MS/MS – 16 cells
per day 1,240 – (Li et al.,

2022h)

WinO No need TMT10-plex
labelled RPMI8226 SH800S Cell

sorter LC-MS/MS – 144 cells
per day 845 – (Masuda et al.,

2022)

T-SCP No need label free HeLa FACS LC-TIMS-
TOF-SCP

308 cells per
run

41 cells
per day 2,083 2,501 (n=231) (Brunner et al.,

2022)
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sample vials were subsequently used as sample tubes for the
autosampler of the LC system to perform the sample injection.
With the help of the high sensitivity LC-timsTOF system and DIA
mode, 2,467 proteins can be identified from one A549 cell.
PiSPA achieved the largest protein number identified from one

single mammalian somatic cell in label-free SCP up to now.

Easy-to-use tools
SCoPE pioneered the application of TMT labeling strategies in
single-cell proteomics and introduced a “carrier channel”

Figure 8. Workflows of recent SCP tools. A, iPAD-1 (Shao et al., 2018). B, OAD (Li et al., 2018b). C, nanoPOTS (Zhu et al., 2018d). D, nest nanoPOTS (Woo et al., 2021). E,
proteoCHIP (Ctortecka et al., 2022a). F, iProChip (Gebreyesus et al., 2022). G, PiSPA (Wang et al., 2022d).
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containing hundreds of cells to share the most non-specific
adsorption loss as well as to provide most signal for MS analysis
(Budnik et al., 2018). Single cells were picked manually into
reaction tubes containing H2O and then mechanically lysed by
adaptive focused acoustics (AFA). Any detergent that would
interfere with the LC-MS system was not introduced. With
TMT10plex labelling, 767 proteins were identified from single U-
937 or Jurkat cell using 200 cells as carrier. To overcome the
weaknesses of expensive AFA equipment and low-throughput
manual cell isolation, a second-generation tool, SCoPE2, was
developed (Specht et al., 2021). Single cells were sorted by FACS
into the commercial 384-well plates containing 1 μL H2O and
then lysed through freeze-thawing (Figure 9A). Compared with
SCoPE, SCoPE2 decreased lysis volumes by 10-fold, reduced the
cost of consumables and equipment by over 100-fold, increased
the throughput of sample preparation by over 100-fold, and
increased the identified proteins from one cell up to 1,000. This
was the first SCP tool that could identify more than 1,000
proteins in one cell without any customized equipment or
expensive instrument. Recently, the same group developed a new
preparation method called nPOP which employed cellenONE for
cell sorting and liquid operation (Leduc et al., 2022). nPOP
enabled the simultaneous and automated preparation of over
2,000 single cells in droplets on a special fluorocarbon coated
glass slide surface. Although automatic precision operations and
high throughput attenuated the batch effect, nPOP became less
accessible. Schoof et al. (2021) developed a similar SCP tool
inspired by ScoPE2. They replaced water with TFE as the lysis
reagent, which has been shown to produce more protein and
especially peptide identifications. It is worth mentioning that they
developed a computational workflow, SCeptre (single cell
proteomics readout of expression), for the analysis of SCP MS
data. SCeptre was implemented in Python and enabled quality
control, normalization of batch effects and biological interroga-
tion of multiplexed SCP MS data. Our group developed UE-SCP
(an ultra-sensitive and easy-to-use multiplexed single-cell pro-
teomic workflow) which was also inspired by ScoPE2 recently
(Gu et al., 2022b). UE-SCP employed the cellenONE for sorting
single cell softly and reduced the cell number in carrier channel
to 100 for better quantification. With the help of high sensitivity
LC-timsTOF system, the median number of proteins identified
from one HeLa cell can exceed 2,300, which achieved the largest
identified protein number from one cell without any customized
equipment up to now.

To avoid sample loss caused by nonspecific adsorption of tubes
and LC columns, Li et al. (2022h) brought a new idea called Mad-
CASP (mass-adaptive coating-assisted single-cell proteomics).
They designed a hydrophobic peptide, which was mainly
composed of hydrophobic amino acids (AAs) F and V with K
inserted every 4 AAs (Figure 9B). Using tubes coated with these
peptides to prepare single-cell samples, the number of identified
proteins can increase by 63%. During trypsin digestion, these
hydrophobic peptides could be digested into 5-AA peptide
fragments. These low-mass fragments would be excluded in MS
data acquisition and simultaneously play the role of carriers to
reduce the loss of single-cell peptides due to the adsorption of the
LC column. With this novel preparation and data acquisition
strategy, they identified an average of 1,240 proteins from a
single HeLa cell.

Masuda et al. (2022) developed another novel SCP tool, called
WinO (a water droplet-in-oil digestion). It was based on carboxyl-

coated beads and phase transfer surfactants (Figure 9C). Single
cells were directly sorted into 96-well plates containing 50 μL
ethyl acetate and formed as a suspending droplet. Then the entire
preparation was accomplished in this water droplet, minimizing
the contact area between sample and containers to reduce the
loss of proteins and peptides by adsorption. It was the first
attempt to use magnetic beads in SCP to enhance the recovery of
hydrophobic proteins and peptides. 96.2% of identified peptides
showed higher intensity in samples prepared with the beads than
in those without beads. This workflow has been successfully
performed on 96-well plates and identified 845 proteins from one
cell based on TMT10plex labelling.

Recently, Brunner et al. (2022) reported a true single-cell-
derived proteomics (T-SCP) that aimed to combine the most
advanced technologies that could achieve ultra-high sensitivity
and be commercially available at the same time. Cell sorting was
achieved by FACS and the entire preparation happened in the
commercial 384-well plate in microliter-level volume that was
easy to operate. Then peptides were concentrated in an EvoTip
device for desalt and on-line sample loading. With the help of
timsTOF SCP MS and diaPASEF mode, 2,083 proteins were
identified from one HeLa cell using a HeLa DIA spectral library
with about 4,000 protein groups.

Applications

Although the SCP technologies are not as developed as single-cell
transcriptomics (SCT), there are still several studies that have
demonstrated its indispensability in biological and clinical
research. Here we mainly introduce its applications in cell
differentiation, disease heterogeneity, and cell cycle.

Cancer heterogeneity
Cell heterogeneity is an increasing concern in diseases, especially
cancer research. Tsai et al. (2021) developed a novel SCP tool
termed surfactant-assisted one-pot sample preparation (SOP)-MS
and applied it to single luciferase 2-tdTomato (L2T) tumor cells
derived from a patient CTC-derived xenograft (PCDX) mouse
model, revealing different protein signatures between primary
tumors and early lung metastases. The differentially expressed
proteins are involved in tumor immunity, epithelial cell
differentiation and EMT, indicating the possibility of selective
pressure in immune evasion and cell state plasticity. These results
provide a clear path for future research into the mechanisms of
cancer metastasis and have the potential to guide targeted cancer
therapies

Biomarker discovery
MS-based proteomics is an ideal tool for discovering differences in
protein abundance levels in patients and healthy individuals, and
therefore, in principle, a powerful technology for biomarker
discovery. Karayel et al. (2022) performed large-scale cerebrosp-
inal fluid proteomics analyses on Parkinson’s disease patients
and quantified more than 1,700 proteins. They discovered
lysosomal and immune-related biomarker signatures specific to
Parkinson’s disease patients with LRRK2 G2019S carriers. Du et
al. (2023) performed proteome profiling of 144 urinary and 44
urinary exosomes from type 2 diabetes mellitus patients with
albuminuria in varying degrees. By analyzing, they found several
potential biomarkers, such as SERPINA1 and transferrin, that
could be used for diabetic kidney disease diagnosis or disease
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monitoring.

Cell differentiation
Cell differentiation processes are subject to various disturbances
that lead to different cell fates. Single-cell proteome has been
applied to reveal the heterogeneity and dynamics during cell
differentiation. Using SCoPE-MS, Budnik et al. (2018) quantified
the single-cell proteome of ES cell in days 3, 5, and 8 after
differentiation induction. They revealed the corresponding
correlation vectors between days 5 and 8 were more similar
than between days 3 and 5, indicating the more advanced
differentiation changes on those days. Compared their SCP data
with SCT data, they further found there is a coordinated mRNA
and protein covariation at the single-cell level, proving the
quantitative accuracy and necessity of SCP research. Using a
multiplexed SCP workflow derived from SCoPE-MS, Schoof et al.
(2021) explored the protein profiles of cells in different
differentiative stages from a primary acute myeloid leukemia
(AML) culture model. They successfully distinguished differentia-
tion stages in this complex cellular hierarchy and found there
might be two parallel differentiation trajectories for leukemic
stem cells (LSC).

Cell cycle
Analysis of the same cell type in different cell cycle phases is
another challenge in single-cell omics which requires higher

sensitivity and accuracy of detection. Brunner et al. (2022)
applied T-SCP to demonstrate the protein profiles of HeLa cells
which were arrested cell cycle by drug. They investigated the
differentially expressed proteins between different cell cycle
stages, found a large number of known cell cycle regulators
were significantly regulated, and also identified some new cell
cycle-associated proteins. Using the upgraded preparation
method nPOP and LC-MS analysis method pSCoPE, the research
team of SCoPE2 recently quantified cell division cycle (CDC)-
related protein covariation within a cell type (Leduc et al., 2022).
They identified differentially expressed proteins among G1, S, and
G2/M phases in monocyte and melanoma cells, and constructed
CDC markers.

Discussion and prospects

At the genomic and transcriptomic levels, single-cell sequencing
has become a powerful tool for studying cell heterogeneity and
identifying different phenotypic cell types. In contrast, MS-based
single-cell proteomics is still in its infancy. A recent study by
Brunner et al. (2022) sheds light on the necessity for single-cell
proteomics. When comparing the SCP measurements with
similar single-cell RNA sequencing data, the protein expression
completeness reached 49% on average, whereas gene expression
completeness was only 27% in SMART-seq2 and even as low as
8% for droplet-based data. Many of the transcripts are expressed

Figure 9. Workflows of recent easy-to-use SCP tools. A, SCoPE2 (Specht et al., 2021). B, WinO (Masuda et al., 2022). C, Mad-CASP (Li et al., 2022h).
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at less than one copy per cell on average and result in a mass of
shot noise in SCT data. Thus, the amount of transcriptional
information that can be captured from one cell is very limited,
while single-cell proteomics can provide relatively complete
information on the protein level of one cell. This is particularly
important for precious cell types such as CTCs and embryos. On
the other hand, several published works have demonstrated a
low correlation between SCT and SCP. Although bulk transcrip-
tomic and proteomic data showed a moderate correlation, the
correlation at the single-cell level decreased to 0.2–0.4 (Brunner
et al., 2022; Woo et al., 2021). These results illustrated that the
proteome and transcriptome levels of the same gene can vary
greatly, but this difference was obscured in the bulk measure-
ments. These views further suggested the necessity for measuring
proteome directly at the single-cell level.

The development direction of single-cell proteomics is always
focused on more identified proteins and higher throughput. Profit
from both advances in instruments and the development of new
SCP workflows, the protein number identified from one
mammalian somatic cell has jumped to the level of 3,000. More
than 5,000 proteins can be cumulatively quantified in ~40
single-cells, which has been able to achieve a similar data level as
bulk-size proteomics (Wang et al., 2022d). By using the TMT
labeling strategy with shorter liquid chromatography gradients,
more than 2,000 single cells have been completely analyzed in
less than ten days, which has also been close to matching the SCT
throughput (Leduc et al., 2022). Although the deepest protein
coverage and the highest throughput have not been achieved in
one SCP tool, there are some methods that perform well in both.
proteoCHIP achieved analysis of more than 300 cells in about 2
days and identified 3,674 proteins from 276 single cells. Our
recent work, UE-SCP, identified 4,320 proteins from 128 single-
cells and the entire analysis can be completed within 3 d.

At present, most SCP tools are limited to the laboratory where
they were developed and require highly specialized equipment or
operator level. Ease of use is an ineluctable issue for SCP to
become a viable tool for scientific and clinical researches. There
are several SCP tools that can perform excellently without any
customized equipment, such as ScoPE2, UE-SCP, and T-SCP. At
the same time, some highly integrated microfluidic chips showed
promise for commercialization, such as proteoCHIP and N2
chips. Given that SCP is still in its early stages, most of the losses
caused by the sample transfer process are still difficult to solve in
unintegrated manners. We summarized the latest SCP tools from
accessibility, throughput, and analysis depth shown in Figure S1
in Supporting Information. How to better balance these
parameters is the next question to consider.

With the help of high-speed cell sorting machines, simplified
sample preparation processes, and automated liquid operators,
the steps prior to MS analysis have reached the throughput of
more than 2,000 single cells per day (Leduc et al., 2022).
However, under the premise of considering the analytical
performance, the chromatographic separation and mass spectro-
metry detection time of one SCP sample is still about 1 h. LC-MS
analysis time has become the bottleneck of SCP throughput
improvement. Multiplex labeling is a feasible method to improve
the throughput of LC-MS analysis which has been applied in
many SCP tools yet. As TMT labels have been expanded to 18
plex, the development of higher plex reagents may require
expensive investments but is still worth looking forward to.
Nonisobaric isotopologous mass tags such as mTRAQ have been

used in low-input proteomics and combined with DIA-MS to
improve throughput and protein coverage at the same time
(Derks et al., 2022). As nonisobaric isotopologous mass tags may
be easier to expand to multiplex than isobaric mass tags, its
application in high-throughput single-cell proteomics is promis-
ing. Dephoure and Gygi (2012) described a hyerplexing method
that enabled the analysis of samples from multiple conditions
simultaneously by combining two different labeling methods,
which may have implications for throughput enhancement in
single-cell proteomics.

Here we focused on proteomics based on living single-cells in
suspensions, but it is important to note that SCP based on trace
cells from formalin-fixed paraffin-embedding (FFPE) tissues has
come hand in hand. Although it is not yet possible to identify
thousands of proteins from a single cell in FFPE tissues because of
the impact of formaldehyde-mediated cross-links, there are
several approaches that are approaching this goal. Using the
optimized nanoPOTS, Nwosu et al. (2022) have identified an
average of 1,312 from mouse liver tissues as small as
0.0025 mm2×10 μm which corresponded to about 10 cells.
We developed a spatially resolved proteomic tool called LCM-
MTA which can quantify 536 proteins from 0.005 mm2×8 μm
human placenta FFPE tissue (about 15 cells) and 1,477 proteins
from 0.1 mm2×8 μm tissue (Gu et al., 2022a). Applied the LCM-
MTA on clinical colorectal cancer (CRC) tissues, the functional
differences of different cell types were accurately distinguished.
Mund et al. (2022b) introduced the Deep Visual Proteomics
(DVP), which combined artificial-intelligence-driven image
analysis of cellular phenotypes with automated single-cell or
single-nucleus laser microdissection and ultra-high-sensitivity
mass spectrometry. By collecting about 100 cells for one sample,
they have successfully characterized the expression of the
proteome from melanocytes, melanoma in situ to invasive
melanoma. Spatially proteomics in single-cell resolution can
provide a new dimension to single-cell proteomics. Many
hospitals and research institutions have massive amounts of
FFPE tissue stored in their repositories. If reliable SCP tools can be
applied to them, it will bring a great boost to biomedical research.

Summary

Overall, single-cell proteomics is in the early stage of explosive
development. Just in 2019, analysis of the proteome from single
cells was described as a “dream”, but today there have been
several promising tools developed (Marx, 2019). We believe that
with the optimization of accessibility and the further improve-
ment of throughput, the truly large-scale applications of single-
cell proteomics in scientific and clinical research, such as organ
maps, drug screening, and precise disease classification, are
within reach.

Chapter 5 Single-cell metabolomics technology

Most human cells are approximately 5 to 25 μm in diameter with
as low as sub-pl intracellular volumes and highly dynamic
metabolite concentrations ranging from a few copies to more
than 100,000 (Zenobi, 2013). Compared with other omics, the
genome is approximately static, the proteome and transcriptome
change in minutes or hours, whereas the metabolome changes
on a time scale of milliseconds to seconds (Weibel et al., 1974).
For the present objects, the metabolome includes small molecules
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(usually lesser than 1.5 kD in size, but excluding nucleic acids,
minerals, and salts), lipids, peptides, drugs, and their xenobiotics
(Minakshi et al., 2019; Wishart et al., 2007). All of them are
characterized by structural diversity, which makes discrimina-
tion difficult. And typically, a single cell can be detected tens to
hundreds of analytes but only ~10% can be assigned using high-
resolution MS and database search methods (Yin et al., 2018).
Thus, extracting small volume content, snapshotting the quick
turnover of metabolites, discriminating the molecular species
diversity, improving detection sensitivity and selectivity, and
boosting detection limits, all are inevitable challenges in single-
cell metabolomics (SCM) research.

In the process of SCM research, a large number of research
technologies, analytical platforms, and applications have
emerged. Here, we review the development of SCM in the last
ten years, including the classes of research techniques, mainly
analytical workflow, applications, and possible breakthroughs.

Research techniques in single-cell metabolomics

To date, there are various research techniques for analyte
measurement of a single cell, which are mainly divided into
microscope-based, spectroscopy-based, and mass spectrometry-
based platforms (Galler et al., 2014). Microscope-based technol-
ogies could observe cellular structures at the nanoscale, such as
stimulated emission depletion (STED) microscopy, stochastic
optical reconstruction microscopy (STORM), and photoactivated
localization microscopy (PALM). The advantages of microscope-
based analysis for single cells are as obvious as the disadvantages,
with the highest spatial-resolution insight into cellular structures
but the least biochemical information. Furthermore, most
microscope-based methods have a low throughput limitation,
and their long detection time is not suitable for dynamic analysis
(Zheng and Li, 2012). Spectroscopy-based methods are widely
applied, among which nuclear magnetic resonance (NMR) is the
most used because of its characteristics of nondestructive
detection and high reproducibility. However, multicellular
analysis has dominated so far due to its relatively low sensitivity
(Galler et al., 2014). Mass spectrometry-based methods are the
indispensable tool for the simultaneous detection of a large
number of analytes in a short period of time. They provide
accurate mass-charge ratios, retention times, and quantitative
results for both known and unknown molecules. In addition,
molecules below sub-attomolar concentrations could be detected
(Villas-Bôas et al., 2005). By contrast, MS wins out among these
technologies for its high detection sensitivity and selectivity,
broad detection range, fast analysis speed, and strong power of
molecular structure identification. MS is considered the most
powerful tool for characterizing the chemical profile of a single
cell.

State-of-the-art technologies and methods in single-cell
metabolomics field based on mass spectrometry

The analytical workflow in single-cell metabolomics based on MS
mainly refers to single-cell sampling, content measurement, and
data analysis. Single-cell sampling is the core of SCM. Single cells
can be sampled directly or cultured on other platforms until
metabolite analysis. For the purpose of the sampled content truly
reflecting the metabolic profile (for example, neither loss of
analyte volume nor misleading results caused by rapid metabolic

turnover), sometimes additional treatments are needed to
quench cell metabolism, including the addition of cold organic
solvents or rapid freezing (Ibáñez et al., 2013). Care must be
taken to avoid interfering with the culture media which may lead
to the production of abnormal metabolites (Minakshi et al.,
2019). During the content measurement by MS, molecules are
ionized and converted to the gas phase, followed by passed into
MS. Then moving ions are separated according to their mass to
charge ratios in the magnetic field or electric field and detected by
a detector. There are two main types of ion sources have been
applied in single-cell metabolomics, laser desorption ionization
and electrospray ionization (Figure 10). However, data acquisi-
tion could be challenging and the mode needs to be selected
according to the research purpose. A large but indistinguishable
number of metabolite features would be obtained if untargeted
metabolomics is performed, whereas limited but definitive results
would be acquired if targeted metabolomics is performed.
Therefore, it is necessary to consider the tradeoff between
throughput and coverage before SCM analysis (Tajik et al.,
2022). In order to obtain the structural and functional
information of metabolites, data analysis is carried out. The
process of information mining partly determines the results of the
research, which is important for the research. Therefore, we
focus on single-cell sampling techniques and data analysis.

Sampling techniques in single-cell metabolomics based on
Mass spectrometry

The single-cell sampling techniques for MS analysis can be
broadly divided into three categories: (i) desorption ionization, (ii)
content extraction, and (iii) sorting and ionization.

Desorption ionization
The intact single cells can be directly subjected to MS analysis
where sampling and ionization processes simultaneously occur
using the desorption ionization method (Liu and Yang, 2021).
Desorption ionization can be divided into vacuum desorption and
ambient desorption based on whether analytes are ionized in a
vacuum system.

Secondary ion mass spectrometry (SIMS) (Figure 10A) uses a
high-energy accelerated primary ion beam (e.g., Cs+, O2

+, Ar+,
and Ga+) to bombard the target surface, which results in the
ejection of plume of molecules or ions from the surface. SIMS is an
effective technique for subcellular distribution imaging of various
molecules with high spatial resolution (50 nm) (Yin et al.,
2019a). While traditional primary ion beams induce extensive
molecular fragmentation, modern SIMS often use cluster ions as
its primary ion beam (e.g., Bi3+, SF5

+, and C60
+) to minimize

fragmentation (Rubakhin et al., 2013). Nanoscale secondary ion
MS (nanoSIMS) enables the primary ion beam to scan the sample
at a perpendicular angle which shortens the working distance
and improves secondary ion transmission. It has been applied for
quantitation of subcellular chemical distribution with a lateral
resolution of ~50 nm (Jiang et al., 2014).

Matrix-assisted laser desorption ionization (MALDI) (Figure
10B) is regarded as a soft ionization method that does not cause
excessive fragmentation. Since the increasing ionization effi-
ciency, it has become one of the most widely used laser
desorption methods, which relies on the absorption of laser and
the transfer of charges by auxiliary matrix molecules to enhance
the analyte ionization. It can achieve resolution at the micron to
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submicron level (Emara et al., 2017) and provide high-fidelity
results of native analyte distribution.

However, signals from the matrix molecules may strongly
overlap with potential analytes (<500 D) (Ferguson et al., 2014).
Multiple matrix-free laser desorption ionization (LDI) methods,
such as desorption/ionization on porous silicon (DIOS) MS,
Nanostructure-initiator MS (NIMS), and nanopost array (NAPA)
MS (Figure 10C) were used. These ionizations rely on the
interaction between laser radiation and nanostructures to
contribute to the desorption and ionization of the sample, which
solve the signal overlap and have comparable spatial resolution
to MALDI (Yin et al., 2019a).

Traditional SIMS, MALDI, and matrix-free LDI methods are all
vacuum-based. Qualitative and quantitative information on
small molecular substances can be provided due to excellent

spatial resolution. The optimized technology has high sensitivity
and detection limits can reach the fg level (Yin et al., 2019a). A
few thousand cells can be analyzed in a single experiment after
generating single-cell arrays (Zhang and Vertes, 2018). How-
ever, some sample preparation steps, such as frozen dehydration,
are introduced to maintain cellular shapes under high vacuum
conditions (Zhang and Vertes, 2018). These steps may affect the
chemical compositions of cells. The vacuum condition can also
potentially interfere with the distribution of metabolites, parti-
cularly for volatile and semi-volatile species. Owing to technical
innovations, atmospheric-pressure MALDI-MS (AP-MALDI-MS)
has been developed with a lateral resolution as low as 1.4 μm
(Kompauer et al., 2017).

Ambient ionization refers to the generation of ions under
ambient conditions (e.g., native temperature and pressure)

Figure 10. Examples of ionization techniques in single-cell metabolomics based on MS. A, Secondary ion MS (SIMS) (Wu et al., 2017a). B, Matrix-assisted laser desorption/
ionization (MALDI) MS. C, Nanopost array (NAPA) MS (Minakshi et al., 2019). D, Laser ablation electrospray ionization (LA-ESI) (Stopka et al., 2018). E, Desorption electrospray
ionization (DESI). F, Electrospray ionization (ESI). G, Nano-electrospray ionization (nano-ESI) (Bergman and Lanekoff, 2017). H, Pulsed direct current electrospray ionization MS
(Pulsed-DC-ESI) (Wei et al., 2020).
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requiring little to no sample preparation. Laser ablation
electrospray ionization (LA-ESI) (Figure 10D) is a matrix-free
technique that utilizes a pulsed mid-infrared region laser beam at
the wavelength of 2.94 μm to activate a water-rich target
sample. At this wavelength, water strongly absorbs the laser
radiation and creates a plume of molecules that are released into
the gas phase (Nemes and Vertes, 2007). The desorption plume
mixes with an ESI plume can enhance the ionization of analytes.
LA-ESI eliminates sample preparation and has a spatial resolu-
tion as low as 30 μm (Shrestha and Vertes, 2009). A similar
approach is desorption electrospray ionization (DESI) (Figure
10E), in which analyte ions are produced by desorption and
ionization using electrospray directed toward the sample surface.
However, the limited spatial resolution (>50 μm) usually
prevents it from SCM analysis (Taylor et al., 2021). Nanospray
desorption electrospray ionization (nano-DESI) utilizes a primary
capillary for solvent delivery on cell samples and a secondary
capillary for picking up the extracted molecules for MS analysis.
Its resolution is determined by the size of the liquid bridge formed
between two capillaries, which is controlled by the capillary’s
size, their position, and the flow rate (Yin et al., 2019b). The
addition of shear force probes standardizes capillary-to-sample
distance (Nguyen et al., 2017). Then, a pneumatically assisted
nano-DESI device was implemented to propel the solvent through
the nanospray capillary, which improved sensitivity for metabo-
lite species by 1–3 orders of magnitude and reduced ionization
suppression (Duncan et al., 2017). These reduce the dependence
on probe-to-surface distance. The resolution that can be achieved
with current nano-DESI technology is 8.5 μm (Rao et al., 2015).

The sensitivity, spatial resolution, coverage, and throughput
vary with the different desorption ionization methods (Figure S2
and Table S8 in Supporting Information) (Taylor et al., 2021). At
present, desorption ionization MS methods are mainly used in
mass spectrometry imaging (MSI) which employs an analytical
probe (e.g., ion beam, laser, and solvent junction) capable of
analytes desorption and ionization in situ. MSI can provide
additional functional information by mapping the location of
small molecules in situ, which is promising (Taylor et al., 2021).
SpaceM integrated MALDI imaging with light microscopy and
digital image processing. It took the first microscope image to
capture the relative positions of cells, then collected MALDI
imaging of metabolites, followed by a second microscope image to
show a visual cue which cell the metabolite came from. SpaceM
could detect >100 metabolites from >1,000 individual cells per
hour (Rappez et al., 2021). It has the most identifications among
the known MSI techniques. If the target sample is sectioned
consecutively and each section is used for MSI, the 3D spatial
metabolite map will be obtained after the compilation of the 2D
MS images. Dueñas et al. (2017) utilized MALDI-MSI to visualize
the three-dimensional spatial distribution of phospholipid classes
in individual zebrafish embryos.

Content extraction
Electrospray ionization methods (Figure 10F) are also extensively
used for biological molecule analysis of single cells, especially for
live cells, because of the significantly reduced mechanical and
chemical perturbations and greatly simplified sample prepara-
tion. ESI-MS generally favors the detection of analytes at
relatively high concentrations due to its relatively low ionization
efficiency, ion transmission, and relatively high ion suppression.
Naturally, the modified techniques have been developed and

applied in SCM, including nano-electrospray ionization (nano-
ESI) (Figure 10G) (Karas et al., 2000), probe electrospray
ionization (PESI) (Gong et al., 2014), induced nano-ESI (InESI)
(Huang et al., 2011) and pico-electrospray ionization (pico-ESI)
(Wei et al., 2020) (Figure 10H).

Metabolome acquired directly from a living cell in situ can
result in a more realistic and representative chemical profile of
cell metabolism and phenotype. The direct sampling analysis
method is content extraction which can be divided into
micromanipulation, microextraction, and microjunction probes
(Figure 11).

Micromanipulation means manipulating a micropipette to
gently pick individual cells and suck out metabolites. Micro-
manipulation coupled MS mainly uses nano-ESI capillary whose
emitter internal diameter is closer to the MS inlet. An application,
known as live single-cell MS (live MS) (Figure 11A), was achieved
by sucking out the content with a metal-coated microcapillary
under video-microscopy, adding an ionization solvent (acetoni-
trile containing 0.5% formic acid) from the microcapillary rear,
and directly feeding the mixture into MS (Mizuno et al., 2008).
The extracted content characterized hundreds of molecules at
sub-attomolar-level sensitivity within minutes (Fujii et al.,
2015). However, the analytes were diluted tens of thousands of
times due to the ionization reagent. Subsequently, PESI was used
to enrich and extract metabolites by inserting a tungsten probe
with a tip diameter of 1 μm into the single cell for ~30 s (Gong et
al., 2014). Both have the disadvantage of controlling the
imprecise amount of extracted material from cells. Consequently,
quantitative extraction techniques of pressure assisted (Zhang
and Vertes, 2015) or electroosmotic (Yin et al., 2018) micro-
sampling were developed.

Most small molecules from a single cell can not be directly
detected by MS due to the presence of intracellular interfering
ions and high concentrations of non-volatile salts. Thus, liquid-
liquid extraction serves different analyte classes (Figure 11B).
Multiple microextraction devices coupled with MS are proposed
to achieve a high coverage metabolic analysis by adding low
volumes of an extraction solvent. In short, the capillary tip
absorbs organic solvent and aqueous solution respectively in
positive and negative ion mode at nano-liter or pico-liter scale,
followed by connected to a syringe and a clamp which enable
extraction reagent to cover a single cell for a few seconds (e.g.,
10 s) under an inverted microscope and to complete the
extraction (Wang et al., 2019c). In general, the microextraction
partially alleviates the problem of MS incompatibility with
intracellular interfering ions and salts, but the high viscosity of
the cell contents also needs assistant ionization solvents to obtain
ion signals which limit metabolite coverage.

The characteristics of the above content extraction, sampling
and then ionization, prohibit the real-time detection. Liquid
microjunction probes achieve in real-time, in situ metabolite
extraction with integrated solvent microextraction and nanos-
cale micromanipulators. Yang’s group (Pan et al., 2014)
introduced multiple devices, including single-probe (Figure
11C) and T-probe. Single-probe is fabricated by embedding a
fused silica capillary and a nano-ESI emitter into a dual-bore
quartz needle. Droplets at the tip of the needle formed by
continuously injecting liquid from one side of the needle can
extract intracellular material and they are discharged through
the other side and sent to MS. T-probe works similarly, with three
capillaries embedded into T-shaped grooves, where the solvent-
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providing capillary is in line with the nano-ESI emitter and the
sampling capillary is vertically placed (Liu et al., 2018b). Single-
probe is used in the single cells residing in microwells and T-probe
is modified to analyze live non-adherent cells. In terms of
operation difficulty, the content extraction of adhesive cells is
easier to achieve than suspended cells (Emara et al., 2017).

In brief, the method of content extraction can not only realize
living cell studies but also obtain relatively high metabolite
coverage. However, the main limitations of the content extrac-
tion method are relatively tedious manipulation, low sample
throughput, and time-consuming (3–5 min per cell) (Table S8 in
Supporting Information) (Fujii et al., 2015).

Sorting and ionization
Most of the time, single-cell analysis begins with sample
preparation in a bid to isolate the target cell without affecting
its state. There are a large number of single-cell isolation
techniques in a high-throughput manner that have been
developed so far. Since single-cell sampling occurs after sorting,
we call this method sorting and ionization for short. It can be
divided into label sorting-based, microfluidic device-based and
LCM-based methods (Figure 12).

Conventional cell sorting methods, including flow cytometry,
FACS, and mass cytometry, are label-based. Flow cytometry
flows a cell at a time by controlling the cell suspension. Labeled
with fluorescent markers, cells can shed light into various
properties when a laser beam scatters through them. Similarly,
FACS also uses light scattering and fluorescence properties to sort
cells into subpopulations. As a combination of flow cytometry
and MS, mass cytometry, of which antibodies are labeled with
heavy metal ion tags instead and detected by inductively coupled
plasma (ICP), has been used for sorting and targeted high-
throughput molecular analysis (Bandura et al., 2009). Mass
cytometry is currently limited to a couple of dozen available
proteins and is not shown in metabolite analysis because the
small molecules are difficult to label. Nonetheless, a label-free
mass cytometry realizes online sorting and real-time ESI-MS
analysis for a single cell. CyESI-MS uses three coaxial capillaries
to deliver cell suspension, sheath fluid, and sheath gas,
respectively (Figure 12A). Cells are isolated and extracted by
the sheath fluid, then the sheath gas assists solvent evaporation
and ensures the ions enter MS, which could simultaneously
detect hundreds of cellular metabolites in a high-throughput
way, approximately 38 cells per minute (Yao et al., 2019).

Microfluidic devices bring a significant enhancement in the
throughput and simplification of the workflow. They physically
confine individual cells to microfluidic structures, among which
micro/nano-wells, droplets, microvalve-controlled channels, and
hybrid microfluidic platforms are most extensively used in single-
cell analysis (Liu et al., 2019).

Micro/nano-well-based microfluidic devices, also known as
chip-based methods, consist of dense arrays of wells that typically
are lithographically fabricated onto polydimethylsiloxane
(PDMS), glass, or silicon and serve as containers for individual
cells (Torres et al., 2014). For example, the early invention of an
integrated microfluidic array plate (iMAP) was characterized by
the interface of gravity driven flow, open input fluid exchange
and cell capture mechanism with approximately 100% capture
rate (Dimov et al., 2011). Its design allowed for single-cell
capture, reagent addition, and parallel processing operations.
Castro et al. (2021) deposited a small volume of buffer containing
dense-core vesicles and electron lucent vesicles of Aplysia
californica cells onto an indium tin oxide (ITO)-coated glass
slide. Ibanez and colleagues developed microarrays for MS
(MAMS) (Figure 12B) that allowed thousands of individual cells
to be analyzed in a single MS experiment, which featured arrays
of hydrophilic wells patterned on an omniphobic surface to
enable automated isolation of single cells (Ibáñez et al., 2013).
Yang et al. (2016) revised the fabrication process of the microdot
array by using the contact printing technique.

Droplet-based microfluidic devices usually use two immiscible
fluids to create water-in-oil micro/nanodroplets containing the
individual cell as single-cell reaction vessel. A single cell in the
droplets could be achieved by limited dilution, but the probability
of single-cell events is limited. Combined an inkjet nozzle cell
manipulator with PESI-MS, a drop-on-demand inkjet printing
device was fabricated and used for lipid profiling, which was
capable of producing single-cell events with a probability of about
50% in a fully automatic manner (Chen et al., 2016a). In the
other example, Lin’s group (Huang et al., 2018b) designed a
Dean flow assisted cell ordering system (Figure 12C) to detect
multiple cellular lipids, of which a spiral capillary generated a
secondary force to separate particles in a single equilibrium
position and reduce the agglomeration.

Microvalve-based devices utilize parallel microchannel circuits
coupled to pressure-controlled valves or similar control devices
(Figure 12D) (Unger et al., 2000). By means of precise control of
the microvalve assembly, a series of operations automate and

Figure 11. Examples of content extraction techniques in single-cell metabolomics based on MS. A, Live single cell MS (live MS) (Tajik et al., 2022). B, Microextraction strategy
(Yin et al., 2018). C, Single-probe diagram (Pan et al., 2020).
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parallelize complex biological analysis.
The microfluidic platforms aforementioned have their own

advantages and drawbacks. A promising approach is to combine
the core components from different microfluidic platforms and
overcome each other’s limitations to form a new hybrid platform,
whose common name is lab-on-a-chip system. Leung et al.
(2012) developed a microfluidic device. The programmable
microdroplets-based device combined integrated microvalve
technology with the sample compartmentalization and disper-
sion-free transport to perform single-cell manipulation and
analysis. Furthermore, a multi-dimensional organic mass cyto-
metry was established by connecting a simple microfluidic chip to

the nanoelectrospray emitter, enabling the identification of about
100 metabolites with a throughput of around 40 cells per minute
(Xu et al., 2021a) (Table S8 in Supporting Information). The
multi-step integration is not only beneficial to obtain high
coverage results but also to save time and labor.

Sorting and selection of single cells or subcellular components
can be done by the LCM system which typically consists of a
microscopy component for sample visualization, a laser compo-
nent for selectively dissecting samples, and a collection compo-
nent for material dissected. It is not considered a high-
throughput method, but a high-resolution method suitable for
single-cell isolation from tissue section samples. LCM can

Figure 12. Examples of sorting and ionization techniques in single-cell metabolomics based on MS. A, Label free mass cytometry (CyESI-MS) (Yao et al., 2019). B, Microarrays
for MS (MAMS) (Ibáñez and Svatos, 2020). C, Dean flow assisted cell ordering system (Huang et al., 2018b). D, Microvalve-based microfluidic device (Leung et al., 2012). E, Laser
capture microdissection/liquid vortex capture MS (LMD-LVC-MS) (Cahill and Kertesz, 2020).
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completely isolate the cell from its natural environment. There
has developed a high spatial resolution hybrid laser capture
microdissection/liquid vortex capture/mass spectrometry system
(LMD-LVC-MS) (Figure 12E) with a liquid vortex capture probe
placing directly below the sample substrate that captured the
laser-ablated material, dissolved the material into liquid, and
transported it to MS for analysis (Cahill and Kertesz, 2018).

It is worth mentioning that although the above sampling
techniques can be applied to live cells, developing technologies
under near-physiological conditions remains challenges. But
there have been some technological breakthroughs. Shao et al.
(2022b) came up with an intact living-cell electrolaunching
ionization mass spectrometry (ILCEI-MS) method, which used a
capillary with an inner diameter slightly smaller than the
average cell diameter to achieve cell separation and transport
with the help of a small device. It reduced the volume of ionized
droplets formed under the combined action of an applied electric
field and the surface tension on the port before reaching the MS
inlet. A droplet was roughly equal to a cell. Through this method,
51 cells could be analyzed per minute, and 368 metabolites (from
482 cells) could be assigned in a single experiment. Recently, an
asymmetric serpentine channel microfluidic chip coupled to
pulsed electric field-induced electrospray ionization-high resolu-
tion mass spectrometry (chip-PEF-ESI-HRMS) conditions have
been developed, which was sheathless and external-force-
unused. The single cells were suspended in an aqueous solution
(i.e., isotonic salt concentration). Once a single cell reached the
tip of nanospary emitter, the high voltage electric field made it
disruption and the contents ionization and identification in real
time. It allowed for the annotation of approximately 120
metabolites in a single cell and the throughput of up to 80 cells
per minute (Feng et al., 2022).

Data analysis in single-cell metabolomics based on Mass
spectrometry

The workflow of current single-cell metabolomics data analysis
includes data preprocessing, metabolite annotation, statistical
analysis, network and pathway analysis, and data visualization.
A large number of bioinformatics tools, analytical software, and
databases are now available at each step (Liu and Yang, 2021;
Misra, 2020) (Table S9 in Supporting Information) Data
preprocessing includes two parts. First, convert the raw data
only available to the commercial software of specific vendor into
a compatible format. Second, extract metabolome related
information which involves determining “true” signals, normal-
izing relative abundances among different cells, and screening
out the metabolites present in most cells. Except for the methods
mentioned in Table S9 in Supporting Information, more and
more custom algorithms have been written to extract informa-
tion (Liu and Yang, 2021; Shao et al., 2022b). Then some
software is needed to recognize metabolites, which is metabolite
annotation. Next is statistical analysis. In order to reduce batch
effects and technical variations, data processing is carried out,
including normalization, transformation, and scaling. After
evaluating whether the data has Gaussian distribution or not,
parametric or nonparametric univariate analysis (e.g., t-tests and
analysis of variance) and multivariate analysis (e.g., unsuper-
vised principal components analysis and supervised orthogonal
partial least-squares discriminant analysis) are performed to
reveal the metabolomic biomarkers, group clustering results, and

discrimination between groups according to the experimental
design. By integrating conventional statistical methods with
machine learning to build complex mathematical models, it can
provide high predictive classification results. The open-source
statistical analysis tools include, but are not limited to, R (http://
www.R-project.org) and Python (https://www.python.org).
Mapping of metabolites onto metabolic maps or known
biochemical pathways is network and pathway analysis. Finally,
the above results are visualized to complete the data analysis.

Applications

Subtle differences from cell to cell may lead to great changes in
important biological processes. The bulk analysis of cell popula-
tion shows the average features of multiple cell types and ignores
the rare cells. Therefore, it is necessary to study individual cells.
At present, SCM has been applied to various studies and has
made more or less progress.

It is commonly used to identify single-cell metabolites, explore
the metabolic profiles and compare the up-regulation and down-
regulation of metabolites in normal and other states, especially
for cancer cells. It is also applied to quantify compounds (Pan et
al., 2019), visualize cell heterogeneity (Huang et al., 2018b),
differentiate cell subsets (Zhang et al., 2018), and screen drugs
(Anchang et al., 2018). For example, abnormal lipid synthesis (e.
g., C=C bond position or sn-position isomers formation) could
result in different diseases and reflect the prospect of lipidomics in
precision medicine (Li et al., 2021d). It served to investigate the
role of cells in key biological processes, including drug resistance
(Prieto-Vila et al., 2019), immune response (Labib and Kelley,
2020), tumor metastasis (Wu et al., 2020), and cell fate
determination (Stirparo et al., 2018). Also, an important
application is to study the special properties of rare cells, such
as CTCs, cancer stem cells, and antigen-specific T cells. Take CTCs
for example, they are released into the bloodstream from primary
tumor lesions and cause metastases in distant tissues and organs.
Abouleila et al. (2019) revealed the metabolic profile differences
between CTCs and lymphocytes and found that the synthesis of
GPLs was a key factor in cancer proliferation. Moreover, SCM is
also used in plants. For example, Yuan et al. (2023) used
metabolomics-assisted breeding in watermelons.

Summary

Current single-cell metabolomics methods can analyze a max-
imum of about 3,000 cells in a single experiment, mostly 500–
1,000 (Feng et al., 2022). Developing automation technology is
beneficial. For example, armed with an automated system and a
recognition algorithm, a dispenser robot coupled to a motorized
x-y stage enables to pick up the target cell or organelle quickly
(Emara et al., 2017).

The destructive nature of MS limits the repeatability and
temporal analysis. Therefore, a combination of different analy-
tical tools is recommended to provide comprehensive and multi-
dimensional information. For example, a modified patch clamp
setup was combined with InESI-MS to simultaneously capture
the electrophysiological and metabolic state of a neuron (Zhu et
al., 2017). At the same time, it is necessary to integrate with
single-cell multiomics to plot more detailed characteristic profiles.

How to get highly confident results is a much more important
thing than crafts. Since the standardization procedure of single-
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cell metabolomics, from sample preparation to data analysis, has
not been established, the following work should follow it. We
summarize the technological progress over the last decade in
Table S8 in Supporting Information. Balancing sensitivity,
coverage, and throughput, none of these methods are perfect.
So, it is necessary to develop new methodologies to improve all
aspects. In summary, SCM is still in the early stage, it is going to
continue to flourish.

Chapter 6 Single-cell multimodal sequencing
technology

Multiomics analysis with bulk sequencing has been widely
applied to provide a comprehensive understanding of biological
processes like disease development (Hoadley et al., 2018; Hutter
and Zenklusen, 2018; Liu et al., 2018a; Malta et al., 2018) and
tissue development (Consortium et al., 2020a; Consortium et al.,
2020b; He et al., 2020b; Sethi et al., 2020) through the atlas
integration of multi-omics datasets like genomic, transcriptomic,
epigenomic and proteomic data in multiple species. At the single-
cell scale, the applications of unpaired single-cell multi-omic
sequencing technologies, which use different cells from the same
or similar source for different single-cell experiments, have been
applied to discover new cell subpopulations and new biological
mechanisms by connecting the single-cell transcriptome for cell
type identification to different modalities of other similar cells
(Argelaguet et al., 2019; Hao et al., 2021b). Recent advances in
single-cell sequencing technologies have further enabled the
measurement of multiple omics like DNA, mRNA, epigenomic,
and protein in the same cell at single-cell resolution, providing
the paired and high-resolution discovery of single-cell status.
Also, to integrate the multi-omic single-cell datasets, several
bioinformatic algorithms and methods have been developed to
help pre-process, integrate, and interpret the emerging multi-
omic single-cell datasets.

In this chapter, we first review the (i) recent development of
single-cell joint profiling technique capturing multiple views of
cell molecules from the same cell, mainly focused on the
transcriptome-focused multimodal technologies (Table 3). Next,
we review the (ii) recent advances in multi-modal integration
analysis methods and tools, including the different categories of
applications and algorithms for both unpaired multimodal
datasets and paired multimodal datasets. Also, we summarize
the performance of popular single multi-omic data integration
methods from recent single-cell multi-modal integration bench-
mark studies.

Single-cell multimodal sequencing technology

Multiple types of molecules can be isolated from the same
captured cell by single-cell multi-omics technologies. Several
approaches of single-cell multi-omics sequencing designed for
capturing genomic DNA (gDNA), transcriptome, proteome, and
epigenome have been developed in recent years. Major steps of
single-cell multimodal sequencing technology workflow as
depicted in Figure 13.

Transcriptome+gDNA
Several multi-omic technologies can simultaneously measure
mRNA and gDNA in a single cell. Genome and transcriptome
sequencing (G&T-seq) (Macaulay et al., 2015) applied flow

cytometry cell isolation along with beads-based mRNA and
gDNA separation. gDNA-mRNA sequencing (DR-seq) (Dey et al.,
2015) isolated cells by pipette and then amplified and split tagged
gDNA and mRNA. Simultaneous isolation of genomic DNA and
total RNA (SIDR) (Han et al., 2018a) selected cells with
microplates and separated nucleus and cytoplasm by hypotonic
cytosis. And TARGET-seq (Rodriguez-Meira et al., 2019)
optimized the steps of FACS for cell isolation and reverse
transcription polymerase chain reaction (RT-PCR) for amplifica-
tion, which provided higher cell throughput than previous
methods.

Transcriptome+epigenome
Bisulfite (BS) treatment can convert methylated and unmethy-
lated DNA CG sites (Frommer et al., 1992) and analyze the DNA
methylation at single nucleotide resolution by PCR and next
generation sequencing (Grunau et al., 2001; Harris et al., 2010).
Several single-cell bisulfite sequencing methods that measure the
methylation level at single-cell scale have been developed,
including single-cell reduced representative bisulfite sequencing
(scRRBS) (Guo et al., 2013), single-cell whole genome bisulfite
sequencing (scWGBS) (Smallwood et al., 2014), single-nucleus
methylcytosine sequencing (snmC-seq) (Luo et al., 2017), and
single-cell combinatorial indexing for methylation (sci-MET)
(Mulqueen et al., 2018) (see “Epigenome sequencing” section
for more detail). Recently, several single-cell multi-omic techni-
ques have been developed to capture mRNA and gDNA
methylation in the same cell. Firstly, single-cell methylome and
transcriptome sequencing (scM&T-seq) (Angermueller et al.,
2016) used a similar protocol as G&T-seq (Macaulay et al.,
2015), which used flow cytometry cell isolation along with
beads-based mRNA and gDNA separation followed by bisulfite
treatment. Secondly, simultaneous single-cell methylome and
transcriptome sequencing (scMT-seq) (Hu et al., 2016b) used
micro pipetting to isolate the nucleus of the single cells, then
performed scRRBS and a modified Smart-seq2 procedure to
generate DNA methylome and transcriptome data, respectively.
As an extension of scMT-seq (Hu et al., 2016b), scTrio-Seq (Hou
et al., 2016) can analyze genomic CNVs, the DNA methylome,
and the transcriptome for individual cell simultaneously, as the
genomic CNVs can be computationally inferred from scRRBS by
bulk RRBS data.

Several next-generation-sequencing-based techniques, such as
chromatin immunoprecipitation followed by sequencing (ChIP-
seq) (Blecher-Gonen et al., 2013; Johnson et al., 2007), Dnase I
hypersensitive site sequencing (Dnase-seq) (Boyle et al., 2008),
and assay for transposase-accessible chromatin using sequencing
(ATAC-seq) (Buenrostro et al., 2013) have been developed to
investigate the epigenome profiles such as chromatin structure
and histone modifications in many species (Consortium et al.,
2020a). Another similar method, nucleosome occupancy and
methylome sequencing (NOMe-seq) (Kelly et al., 2012) can label
accessible genomic regions using an exogenous M. CviPI GpC
methyltransferase and simultaneously measure nucleosome
occupancy and cytosine methylation level. Based on these
methods, many new protocols have been developed to measure
the chromatin accessibility as well as DNA methylation or
histone modification in chromatin accessible sites at single-cell
resolution, including single-cell Dnase sequencing (scDNase-seq)
(Jin et al., 2015), single-cell combinatorial indexing assay for
transposase-accessible chromatin with sequencing (sci-ATAC-
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seq) (Cusanovich et al., 2015), single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) (Buenros-
tro et al., 2015), single-cell micrococcal nuclease sequencing
(scMNase-seq) (Lai et al., 2018) and single-cell chromatin
immunoprecipitation sequencing (scChIP-seq) (Rotem et al.,
2015) which can measure the H3 lysine 4 tri-methylation
(H3K4me3) and di-methylation (H3K4me2) modifications. For
more details, please see the Epigenome sequencing section.

Based on these single-cell epigenomic technologies, several
single-cell multi-modal high throughput methods targeting both
chromatin accessibility and transcriptome have been developed.
Cao et al. (2018) developed sci-CAR, the first protocol that can
jointly profile the mRNA and ATAC in the same cell. SciCAR
applied combinatorial indexing for each cell, and then redis-
tributed cells by FACs and lysate splitting, and then amplified for

sequencing. Cao et al. (2018) applied sci-CAR to human and
mouse cell line mixture and mouse kidney tissue and identified
cis-regulatory network from the joint profiling datasets. However,
due to the high sparsity in the scATAC modality and limited
coverage in scRNA modality of sci-CAR, only a minority of
differentially accessible sites and differentially expressed genes in
bulk scRNA and scATAC sequencing can be discovered by single-
cell datasets in sci-CAR. Chen et al. (2019d) developed the
droplet-based single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq), which enhanced the
sequencing coverage of both scRNA and scATAC, and improved
the coverage limitation in sci-CAR. SNARE-seq used a splint
oligonucleotide with sequence complementary to the adaptor
sequence inserted by ATAC transposition (5′ end) and the mRNA
poly(A) bases (3′ end), which allowed to capture both omics data.

Table 3. Recent single-cell multimodal technologies

Multimodal techniques Modalities References

Genome and transcriptome sequencing (G&T-seq) gDNA+mRNA (Macaulay et al., 2015)

gDNA-mRNA sequencing (DR-seq) gDNA+mRNA (Dey et al., 2015)

Simultaneous isolation of genomic DNA and total RNA
(SIDR)

gDNA+mRNA (Han et al., 2018a)

TARGET-seq gDNA+mRNA (Rodriguez-Meira et al., 2019)

Single-cell methylome and transcriptome sequencing
(scM&T-seq) mRNA+Methylation (Angermueller et al., 2016)

Simultaneous single-cell methylome and transcriptome
sequencing (scMT-seq) mRNA+Methylation (Hu et al., 2016b)

scTrio-Seq mRNA+Methylation (Hou et al., 2016)

sci-CAR mRNA+ATAC (Cao et al., 2018)

SNARE-seq mRNA+ATAC (Chen et al., 2019d)

Paired-seq mRNA+ATAC (Zhu et al., 2019b)

SHARE-seq mRNA+ATAC (Ma et al., 2020)

10x Multiome mRNA+ATAC https://www.10xgenomics.com/cn/blog/introducing-
chromium-single-cell-multiome-atac-gene-expression

PEA/STA mRNA+proteome (Genshaft et al., 2016)

PLAYR mRNA+proteome (Frei et al., 2016)

CITE-seq mRNA+proteome (Stoeckius et al., 2017)

REAP-seq mRNA+proteome (Peterson et al., 2017)

RAID mRNA+proteome (Gerlach et al., 2019)

scNMT-seq mRNA+methylation+ATAC (Clark et al., 2018)

scNOMeRe-seq mRNA+methylation+ATAC (Wang et al., 2021b)

ECCITE-seq mRNA+sgRNA+target protein (Mimitou et al., 2019)

Paired-Tag mRNA+ATAC+5 histone modifications (Zhu et al., 2021a)

scCUT&Tag-pro 5 histone modifications+proteome (Zhang et al., 2022a)

Figure 13. Major steps of single cell multimodal sequencing technology workflow.
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Compared with sci-CAR, SNARE-seq detected 4–5 times more
chromatin accessible sites in the mouse postnatal brain dataset
and adult brain dataset than sciCAR tissue dataset, and improved
the throughput by a cellular combinatorial indexing strategy
(Preissl et al., 2018). Zhu et al. (2019b) further improved the
protocol and developed the parallel analysis of individual cells for
RNA expression and DNA accessibility by sequencing (Paired-
seq), which adopted a ligation-based combinatorial indexing
strategy to simultaneously tag both the open chromatin
fragments by the Tn5 transposases and the cDNA molecules by
RT of RNA. Zhu et al. applied Paired-seq to mouse embryonic
cerebral cortex tissue and applied integrated analysis with
ENCODE mouse embryonic cerebral cortex tissue datasets,
reconstructed the cellular trajectory, and recovered the cis-
regulatory network from the dual-omic dataset. More recently,
Ma et al. (2020) developed simultaneous high-throughput ATAC
and RNA expression with sequencing (SHARE-seq), which used
multiple rounds of hybridization blocking to joint labeling mRNA
and chromatin fragments in the same single cell. Compared with
sciCAR (Cao et al., 2018), SNARE-seq (Preissl et al., 2018), and
Paired-seq (Zhu et al., 2019b), SHARE-seq showed higher
scalability on much larger library size for more than 30,000
cells and higher sensitivity with more genes and ATAC peaks
detected in each cell than previous multi-modal methods. Based
on higher data quality, Ma et al. applied a new definition of
domains of regulatory chromatin (DORCs) rather than individual
peaks to analyze the regulatory map between chromatin
accessibility and gene expression, and identified prior functions
of DORCs to gene expression in cell lineage choice and cell fate
decision (Preissl et al., 2018). Recently, 10x Genomics developed
10x Multiome, a commercial service platform for joint profiling of
scRNA and scATAC in the single cell, which would accelerate the
applications of scRNA and scATAC multi-modal techniques in
more biological and clinical research.

Transcriptome+proteome
Besides single-cell multi-modal technologies targeting DNA and
RNA molecules, several single-cell multi-modal methods that can
measure RNA and protein simultaneously in the same cell were
developed. Genshaft et al. (2016) developed proximity extension
assay/specific RNA target amplification (PEA/STA) method.
PEA/STA applied reverse transcriptase as the DNA polymerase
for both RT of RNA and extension of proximity extension assay
(PEA) DNA oligos for 38 proteins to enable cDNA synthesis and
PEA to proceed in the same reaction in the Fluidigm C1TM system
(DeLaughter, 2018). Frei et al. (2016) developed proximity
ligation assay for RNA (PLAYR), a method for highly multiplexed
transcript quantification using flow and mass cytometry, which
is also compatible with standard antibody staining. Using the
mass cytometry, PLAYR allowed simultaneous measurement of
more than 40 mRNAs and proteins, and enabled the character-
ization of the interplay between transcription and translation at
single-cell level. Besides protein-DNA ligation strategy, two
methods targeting surface protein and mRNA, cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq)
(Stoeckius et al., 2017), and RNA expression and protein
sequencing assay (REAP-seq) (Peterson et al., 2017) were
developed to detect both mRNAs and cell surface proteins using
oligonucleotide-labeled antibodies, enabled the multimodal
analysis at single-cell scale by droplet-based single-cell sequen-
cing approaches. These two methods greatly improved the

throughput of the transcriptome. For example, REAP-seq can
quantify proteins with 82 barcoded antibodies and measure more
than 20,000 genes in a single workflow (Peterson et al., 2017).
Another method, single-cell RNA and immunodetection (RAID)
(Gerlach et al., 2019), can detect intracellular proteins and
phosphorylated proteins together with mRNAs. RAID immunos-
tained the intracellular target proteins with antibodies conju-
gated with RNA barcodes, and then converted proteins into
RNAs.

Techniques capturing more than two modalities
Based on these bi-modal single-cell methods we discussed above,
several methods were developed to capture more than two omics
in the same cell. Single-cell nucleosome, methylation and
transcription sequencing (scNMT-seq) (Clark et al., 2018) were
developed by combining scM&T-seq (Angermueller et al., 2016)
and NOMe-seq to measure nucleosome, transcriptome, and DNA
methylome in the same cell. Recently, Wang et al. (2021b)
developed scNOMeRe-seq, which enabled the profiling of
genome-wide chromatin accessibility, DNA methylation, and
transcriptome in the same individual cell and applied this method
for a single-cell multi-omics map of mouse preimplantation
development. Based on CITE-seq, Mimitou et al. (2019) devel-
oped expanded CRISPR-compatible cellular indexing of tran-
scriptomes and epitopes by sequencing (ECCITE-seq) to capture
mRNA, sgRNA and designed target proteins for at least five
modalities in the same single cell. By adapting Paired-seq (Zhu et
al., 2019b) with cleavage under targets and tagmentation
(CUT&Tag) strategy (Kaya-Okur et al., 2019), Zhu et al.
(2021a) further developed parallel analysis of individual cells
for RNA expression and DNA from targeted tagmentation by
sequencing (Paired-Tag), a novel protocol which can simulta-
neously profile scRNA, scATAC and five histone modifications in
the same cell. Also, Zhang et al. (2022a) developed scCUT&Tag-
pro, which combined CUT&Tag with CITE-seq and captured five
histone modifications by CUT&Tag library and proteins by
antibody-derived protein tags library.

Multi-omics integration analysis

Recent advances in single-cell multi-modal technologies provided
substantial data resources to uncover the molecular mechanism
by multi-view high-dimensional and high-resolution datasets.
However, it is hard to properly integrate the multi-modal single-
cell datasets, arising from high dataset dimensionality, high data
sparsity as well as complex variables among multimodal datasets
and techniques. An increasing number of algorithms were
developed for different applications and tasks in multi-modal data
integration analysis, indicating the rapid progression as well as
growing attention from researchers to the field of single-cell
multi-modal data integration and data analysis. Also, several
review papers (Adossa et al., 2021; Argelaguet et al., 2021;
Lance et al., 2022; Xu and McCord, 2022) and benchmark
studies (Brombacher et al., 2022; Luecken et al., 2022) have
performed specialized classification as well as general evaluations
for emerging multi-modal integration tools, providing great
benefits for other researchers to select appropriate methods from
different types of integration tools. Here, we introduce a
comprehensive set of multimodal integration tools and related
studies from the perspectives of the following two sections,
including (i) categories of multimodal integration tools, which
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introduce recently published single-cell multi-modal integration
tools by different classification standards, and (ii) recent bench-
mark studies for these recently published tools.

Categories of multimodal integration tools
Based on previous review papers (Adossa et al., 2021; Argelaguet
et al., 2021; Stanojevic et al., 2022), several criteria can be
applied to classify multimodal integration tools. Firstly, multi-
modal integration tools can be classified with four major
integration strategies based on the choice of the shared features
(known as anchors) for data integration, including horizontal
integration with all genomic features like genes as anchor,
vertical integration with all common cells as anchor, diagonal
integration with no shared features and mosaic integration with
partially shared cells and partially shared genomic features as
anchor (Argelaguet et al., 2021). Several tools with similar
methodologies can also be developed as different types of
integration tools. For example, for algorithms based on non-
negative matrix factorization (NMF), iNMF (Gao et al., 2021a)
was designed as a vertical integration tool, coupledNMF (Gao et
al., 2021a) was designed as a diagonal integration tool, and
UINMF (Kriebel and Welch, 2022) was designed as mosaic
integration tool.

Secondly, the multimodal integration tools can also be grouped
by the types of multi-modal techniques, including “paired” and
“unpaired” integration tools (Brombacher et al., 2022; Stano-
jevic et al., 2022). The paired multimodal integration tools were
specifically designed for multimodal datasets simultaneously
captured and sequenced from the same cell. The vertical
integration and mosaic integration strategies are usually applied
in paired integration tools, as the paired datasets share all or
partial common cells between different modalities. The unpaired
integration tools were designed for integrating independent
single-cell experiments from different modalities, as the cells of
one modality cannot find matched cells from the other
modalities. Due to the difference in both cells and features,
diagonal integration was commonly applied for unpaired data
integration. Several tools were developed for paired or unpaired
multimodal dataset integration specifically. For example, the
Seurat v3 (Stuart et al., 2019) was designed for unpaired multi-
modal datasets, and the updated version—Seurat v4 (Hao et al.,
2021b) was specifically designed for paired multi-modal datasets.
Also, some integration tools (Hu et al., 2022b; Lin et al., 2022;
Zhang et al., 2021c) can be applied to both paired and unpaired
multi-modal datasets.

Thirdly, based on the methodologies, the multimodal integra-
tion tools can be categorized into several sub-types (Stanojevic et
al., 2022), including mathematical matrix factorization methods,
manifold alignment methods, network-based methods, and deep
learning methods. The deep learning integration tools can be
further categorized by the infrastructure of the deep model,
including autoencoder (AE), generative adversarial network
(GAN), GNN, and their extended structure such as variational
autoencoder (VAE). The selection of the methodology is largely
determined by the type of multimodal dataset and the integration
tasks. For unpaired multimodal datasets, manifold alignment
methods can first reduce the different features of multimodal
datasets into the same dimension of latent embeddings/mani-
folds, and then integrate the heterogeneous modalities by the
same manifolds (Argelaguet et al., 2021; Stanojevic et al., 2022).
Similarly, matrix factorization methods can be applied for

different integration tasks by matrix factorizing unmatched
features or cells to the matrix of the same dimension with less
information loss than simple dimension reduction methods along
with manifold alignment (Stanojevic et al., 2022). The deep
learning tools using GAN (Khan et al., 2022; Xu et al., 2021b;
Zhao et al., 2022a), VAE (Ashuach et al., 2021; Lotfollahi et al.,
2022; Minoura et al., 2021) and transformer (Li et al., 2022b)
can learn the common latent embedding from different
modalities of same cells or shared cells and then impute the
missing cells and features, as GNN (Cao and Gao, 2022; Ma et al.,
2021a) model is applied to learn the relationship between
different types of features (gene in scRNA and peak in scATAC for
etc.) and infer biological network in multimodal data integration
(Cao and Gao, 2022; Ma et al., 2021a).

Fourthly, the multimodal integration tools can be classified
based on certain omics for integration. Several multimodal
integration algorithms were designed for specific multi-modal
datasets integration; for example, CiteFuse (Kim et al., 2020a)
was designed for CITE-seq (Peterson et al., 2017) analysis, SCIM
(Stark et al., 2020) was designed for scRNA and CyTOF
integration, while scMVP (Li et al., 2022b) was designed for
paired scRNA and scATAC datasets integration. Also, besides
these tools restricted to specific omics datatypes, several
algorithms like LIGER (Welch et al., 2019) were designed for
general integration tasks without restrictions on integration
omics types.

The multimodal integration tools can also be categorized by
major coding languages like Python and R, and special
integration applications like cross modality translation. All
multimodal integration tools along with their categories are
summarized in Table S10 in Supporting Information.

Benchmarks for single-cell multimodal integration tools
Although plenty of multimodal integration studies have been
published for different tasks in multi-modal single-cell analysis, it
is still difficult to find state-of-the-art methods from published
integration methods. To solve this issue, recently, several
benchmark studies have been performed for the evaluation of
single-cell multimodal integration tools for different tasks of
multi-modal dataset analysis (Brombacher et al., 2022; Lance et
al., 2022; Luecken et al., 2022). These benchmark studies would
provide comprehensive and objective evaluations of the perfor-
mance of these candidate integration tools from the perspective of
data users. Next, we introduce recent benchmark studies and
summarize the performance of multimodal integration tools from
these third-party evaluation studies.

Luecken et al. (2022) performed a benchmark analysis of
single-cell integration tools for tasks of atlas level data integration
and developed a benchmark pipeline for objective, comprehen-
sive, and reproducible evaluation of single-cell integration tools.
This study included several unpaired multimodal single-cell
integration tools; however, it only focused on the integration
tasks for different datasets from the same modalities, like
integration of different scRNA datasets and integration of
different scATAC datasets, but did not provide evaluation for
cross modality integration of paired or unpaired scRNA and
scATAC data. Nevertheless, this study provided a stable,
comprehensive, and highly scalable benchmark framework for
single-cell atlas integration evaluation.

Recently, to better accomplish the analysis challenges arising
from data sparsity, technical and biological variability, and high
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dimensionality from single-cell multimodal integration analysis,
NeuraIPS2021 launched an online competition for three major
tasks in single-cell multimodal data integration analysis (Lance
et al., 2022), including (i) predicting one modality from another,
(ii) matching cells between modalities, and (iii) jointly learning
representations of cellular identity. Among the three tasks, the
second task is specifically designed for unpaired multimodal
integration tools, and the third task is designed for paired
multimodal integration tools. Also, the competition launcher
generated the first single-cell multimodal benchmarking data-
sets, including a multi-center CITE-seq dataset with 90,000 cells
for scRNA and protein integration tasks and a multi-center 10x
Multiome dataset with 70,000 cells for scRNA and scATAC
integration tasks. Among all three tasks, the CLUE (cross-linked
universal embedding) algorithm, a semi-supervised modality
matching function in GLUE (Cao and Gao, 2022) package, won
the first prize and got all categories winner in the second
modality aligning task, showing the top performance of cross
modality matching among unpaired integration tools (Lance et
al., 2022). However, as the competition only evaluated the
algorithms from online submitters, most published single-cell
multimodal integration tools were not included in the bench-
mark evaluation.

For further comparison of published single-cell multimodal
integration tools with deep learning framework, Brombacher et
al. (2022) first reviewed 18 recently published multimodal
integration tools using deep learning model, and then performed
the first comprehensive benchmark study for selected popular
tools using CITE-seq dataset and 10x Multiome dataset from
NeuraIPS2021. For biology preservation tasks, Cobolt (Gong et
al., 2021) showed the best performance among benchmark
algorithms on both CITE-seq and 10x Multiome datasets, only for
larger cell numbers, scMVP (Li et al., 2022b) has better
performance than Cobolt (Gong et al., 2021) on 10x Multiome
dataset. For technique effect removal tasks, SCALEX (Xiong et al.,
2021b) showed consistent top performance on CITE-seq dataset,
and scMVP (Li et al., 2022b) showed the highest performance on
10x Multiome dataset.

Summary

In this chapter, we have provided a summary of recent advances
in multiple types of multi-omic single-cell sequencing techniques,
and their bioinformatics integration methods. With improve-
ments in experimental data quality and the performance of
bioinformatics algorithms, single-cell multi-modal technologies
have provided comprehensive multi-modal insights into different
eras at the single-cell level. Moving forward, expanding the
biological applications of single-cell multimodal techniques, as
well as increasing the performance and robustness of single-cell
multi-modal algorithms, would undoubtedly accelerate new
discoveries in biological and medical research. These improve-
ments hold significant potential to revolutionize our under-
standing of cellular processes and the development of
personalized medicine.

Chapter 7 Single-cell spatial transcriptomics
technology

In the preceding sections, we systematically reviewed the recent
advances in single-cell omics. Although these single-cell sequen-

cing technologies allow the investigation of cellular heterogene-
ity at an unprecedented resolution, they are far from adequate to
get a full understanding of the intricate workings of multicellular
organisms. Many studies emphasize that the state of one cell is
not only regulated by the intracellular regulatory network but
also interfered by the extracellular signals from the environment
(Dries et al., 2021a; Junttila and de Sauvage, 2013; Lin and
Hankenson, 2011). Both the dissociation of tissues and the
isolation of single cells during experimental procedures cause the
loss of critical spatial information, including cell positions and
their mutual proximities. Spatial transcriptomics (ST) has
addressed this limitation, enabling the measurement of gene
expression with spatial information preserved. In this section, we
will introduce spatial transcriptomics technologies, discuss
computational methods for spatial data analysis, and provide a
review of their applications in various biological systems.
Additionally, we will also delve into the current progress in
techniques of spatial multi-omics.

Techniques for spatially resolved transcriptomics

All current spatial transcriptomics techniques can be broadly
summarized into three categories majorly based on (i) micro-
dissection, (ii) barcoding, and (iii) imaging, respectively (Figure
14A–C). These ST technologies differ in their approaches to
location labeling and transcript profiling, which may determine
the spatial resolution, detection efficiency, demanding sample
types, and so on. Next, we will discuss the principles of a selection
of representative techniques from each category and summarize
their characteristics. The curated list of techniques and their
corresponding features is shown in Table 4.

Microdissection-based ST techniques
Techniques falling within this category aim to computationally
reconstruct the 3D structure of tissues from multiple spatially
proximal tissue subregions isolated by various microdissection
approaches (Figure 14A). For instance, RNA tomography (tomo-
seq) obtains RNA from a series of sequential cryosections along
three orthogonal axes in multiple putatively identical biological
samples (Junker et al., 2014). The requirement of identical
biological samples limits the application of tomo-seq on human
samples. By comparison, STRP-seq slices tissues into primary
sections and then secondary stripes using a two-level dissection
strategy, which assumes that spatial expression patterns are
constant between consecutive primary sections spaced 14 μm
apart (Schede et al., 2021). Based on cryosectioning, Geo-seq
utilizes LCM to section tissues into regions as small as around 10
cells (Chen et al., 2017b). Other methods within this type
includes ProximID (Boisset et al., 2018) and PIC-seq (Giladi et al.,
2020), which focus on physical cell interaction within two
(doublets) or three cells (triplets), rather than the positions or
surrounding context in the tissue.

In addition to physical sectioning, microdissection could be
accomplished by combining optical marking with fluorescence-
based cell selection, or photo-cleavage of gene index oligos. For
example, transcriptome in vivo analysis (TIVA) loads TIVA tags
(i.e., photoactivatable mRNA capture molecules) into live cells
and selects cells by laser photoactivation, which subsequently
triggers tags’ hybridization to mRNA (Lovatt et al., 2014). As an
alternative technology, NICHE-seq injects labeled landmark cells
into transgenic mice expressing photoactivatable green fluor-
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Figure 14. Schematics of techniques for spatial transcriptomics and other omics. A, For microdissection-based techniques, the sub-regions of interest can be isolated from the
sample by physical sectioning or optical selection, and collected for library preparation and next-generation sequencing (NGS). B, For barcoding-based techniques, barcodes are
attached to spots or beads for position labeling and in situ mRNA capturing. Barcoded cDNA are collected for subsequent library preparation and sequencing. C, For imaging-
based techniques, with probes designed for genes of interest, in situ hybridization (ISH) or in situ sequencing (ISS) can be performed for in situ profiling. D, Schematics of spatial
techniques for other omics, including 3D genome, epigenome, proteome and metabolome.
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escent (PA-GFP), allowing in situ labeling of niches of interest.
After tissue dissociation, activated PA-GFP+ cells are sorted by
FACS for single-cell transcriptome profiling (Medaglia et al.,
2017). The commercial GeoMX Digital Spatial Profiler (DSP)

developed by NanoString employs probes with UV cleavable
linkers and automates the optical selection (Merritt et al., 2020).

Overall, microdissection coupled with single-cell or bulk RNA
sequencing makes it possible to study the transcriptome within

Table 4. The curated list of spatial transcriptomics techniques and their corresponding features

Techniques Features Type Spatial
resolution

Gene coverage References

tomo-seq Require identical biological samples; enable
the 3D reconstruction of tissues Microdissection-based 18 μm Transcriptome-wide (Junker et al., 2014)

STRP-seq Require consecutive thin slices Microdissection-based 10 cells Transcriptome-wide (Schede et al., 2021)

Geo-seq Enable the 3D reconstruction of tissues Microdissection-based 10 cells Transcriptome-wide (Chen et al., 2017b)

PIC-seq Focus on physical cell interaction rather
than spatial positions Microdissection-based Cellular Transcriptome-wide (Giladi et al., 2020)

ProximID Focus on physical cell interaction rather
than spatial positions Microdissection-based Cellular Transcriptome-wide (Boisset et al., 2018)

TIVA Require the loading of capture tag into
cells; rely on photoactivation Microdissection-based Cellular Transcriptome-wide (Lovatt et al., 2014)

NICHE-seq Work on genetically engineered mice;
select region of interest by photoactivation Microdissection-based Cellula Transcriptome-wide (Medaglia et al., 2017)

GeoMX DSP Rely on photocleavage; appliable in
protein detection Microdissection-based 20–40 cells Targeted (~1,500 genes) (Merritt et al., 2020)

ST With H&E image Spatial barcoding 100 μm Transcriptome-wide (Ståhl et al., 2016)

10x Visium With H&E or immunohistochemistry image Spatial barcoding 55 μm Transcriptome-wide (Ståhl et al., 2016)

Slide-seq(V2) Without histology on the same tissue
section Spatial barcoding 10 μm Transcriptome-wide (Stickels et al., 2021)

HDST Low sensitivity Spatial barcoding 2 μmr Transcriptome-wide (Vickovic et al., 2019)

Stereo-seq Enable subcellular analysis; allow large
field of view Spatial barcoding 0.5–0.7 μm Transcriptome-wide (Chen et al., 2022)

Seq-scope Enable subcellular analysis Spatial barcoding 0.5–0.8 μm Transcriptome-wide (Cho et al., 2021)

PIXEL-seq Enable subcellular analysis Spatial barcoding 1 μm Transcriptome-wide (Fu et al., 2021b)

DBiT-seq Enable simultaneous measurement of RNA
and proteins Spatial barcoding 10 μm Transcriptome-wide (Liu et al., 2020b)

seqFISH+ Use a barcode palette of 60 pseudo colours Fluorescence imaging (ISH-based) Subcellular Targeted (~10,000 genes) (Eng et al., 2019)

MERFISH
Based on multi-bit binary encoding

strategy; combine expansion microscopy
with in situ hybridization

Fluorescence imaging (ISH-based) Subcellular Targeted (~10,000 genes) (Xia et al., 2019)

STARmap Combine hydrogel-tissue chemistry
with in situ sequencing Fluorescence imaging (ISS-based) Subcellular Targeted (~1,000 genes) (Wang et al., 2018)

FISSEQ Use partition sequencing Fluorescence imaging (ISS-based) Subcellular Transcriptome-wide (Lee et al., 2015)

ExSeq Combine expansion microscopy
with in situ sequencing Fluorescence imaging (ISS-based) Subcellular Transcriptome-wide (Alon et al., 2021;

Shah et al., 2016)

Slide-DNA-seq Use barcoded bead arrays to capture
spatially resolved DNA Spatial barcoding 10 μm Genome-wide (Zhao et al., 2022b)

spatial-CUT&Tag
Combine in situ CUT&Tag chemistry with

microfluidic deterministic
barcoding

Spatial barcoding 20 μm Genome-wide (Deng et al., 2022a)

spatial-ATAC-seq
Combine in situ Tn5 transposition

chemistry and microfluidic deterministic
barcoding

Spatial barcoding 20 μm Genome-wide (Deng et al., 2022b)

DNA-MERFISH Enable simultaneous imaging of
genomic loci and nascent transcripts Fluorescence imaging Subcellular Genome-wide (Su et al., 2020)

CosMX SMI Enable quantification of RNA and
proteins Fluorescence imaging Subcellular 64 proteins, 1,000 genes (He et al., 2021a)

SpaceM Combine light microscopy and
MALDI-imaging MS Fluorescence imaging Cellular >100 metabolites (Rappez et al., 2021)

Perturb-map Combine a protein barcode system and
multiplex imaging Fluorescence imaging Cellular 35 genes (120 Pro-Codes) (Dhainaut et al., 2022)
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the spatial context. Microdissection can be performed in a
physical manner, or an optics-dependent way. The physical
sectioning is often implemented manually, making the dissection
protocol labor-intensive and time-consuming. In contrast, optics-
dependent sectioning generally depends on the loading of
specialized tags into live cells or genetic engineering in model
organisms, which restricts its application to fresh-frozen or FFPE
human samples. No matter how microdissection and sequencing
are performed, the exact positions of profiled cells within the
selected subregion are unknown, resulting in a generally low
spatial resolution.

Barcoding-based ST techniques
Microdissection-based techniques trace the spatial information
by manually labeling each subregion. The spatial barcoding
techniques enable automatic recording of spatial coordinates
(Figure 14B). In 2016, Ståhl et al. (2016) pioneered the
application of barcoding techniques in the ST technology. In
this approach, barcodes, together with UMIs and poly(T)
oligonucleotides are immobilized on glass slides to allow in situ
capture of mRNA and cDNA synthesis. Each barcoded spot in the
array is 100 μm in diameter and is positioned 200 μm center-to-
center apart from the adjacent ones, which brings about a
resolution of 10–40 cells. 10x Genomics has further enhanced
the spatial resolution to 5–10 cells using spots with diameters of
55 μm and center-to-center distances of 100 μm. Instead of
directly attaching barcodes to slides, some techniques link
barcodes to beads for position labeling and mRNA capture. For
example, Slide-seq deposits 10-μm DNA-barcoded beads onto a
surface (Rodriques et al., 2019; Stickels et al., 2021). Similarly,
HDST places barcoded beads into an array with 2-μm wells
(Vickovic et al., 2019). Both of these technologies improve spatial
resolution to 1–2 cells. However, as the barcoded beads are
randomly distributed on the slide, in situ sequencing (ISS) or in
situ hybridization (ISH) is required to decode each fixed bead’s
barcode sequence.

Although bead-based techniques can reach a cellular resolu-
tion, they are still too coarse to detect subcellular differences.
Recently, Seq-scope was developed to achieve a 0.5–0.8 μm
center-to-center resolution by repurposing the Illumina sequen-
cing platform (Cho et al., 2021). Another technique enabling
sub-micrometer-resolution profiling is Stereo-seq (Chen et al.,
2022), where 220 nm DNA nanoballs (DNBs) containing
barcodes are deposited on a patterned array with a center-to-
center distance of 500 or 715 nm. Both Seq-scope and Stereo-seq
require two-round sequencing, in which the first associated
barcodes with spatial locations and the second provides
information of captured cDNA, as performed in Slide-seq.

To summarize, the barcoding-based approaches combine
spatial barcoding techniques with NGS to allow transcriptome-
wide profiling of RNA in the spatial context. The technologies
involve a trade-off between spatial resolution and detection
efficiency. Compared with the original ST technology or
commercialized 10x Visium, the improvement in spatial resolu-
tion by Seq-scope, Stereo-seq tends to come at the expense of low
detection sensitivity and low gene coverage.

Imaging-based ST techniques
Both microdissection-based and barcoding-based techniques
extract nucleic acid molecules for NGS sequencing after position
labeling. To preserve RNA in situ, various in situ transcriptomic

techniques were developed for the spatial mapping of gene
expression, including ISH and ISS (Figure 14C). Because these
methods necessitate fluorescence imaging, they are collectively
known as imaging-based techniques.

Most ISH-based ST techniques mainly rely on single-molecule
RNA fluorescence in situ hybridization (smFISH) (Femino et al.,
1998) to enable quantitative measurements of targeted tran-
scripts in situ. SeqFISH belongs to this type, which allows the
simultaneous detection of multiple mRNA molecules by sequen-
tial rounds of fluorescent hybridization, imaging, and stripping of
readout probes (Lubeck et al., 2014). Using the seqFISH strategy,
all the targeted genes are encoded by the combination of rounds
of readout probes. SeqFISH+ expands the readout probe palette
from four or five colors in seqFISH to 60 “pseudo colors” (Eng et
al., 2019), enabling the multiplexing of up to 10,000 genes in a
single cell. MERFISH is another smFISH-based technique, which
also requires multiple rounds of hybridization, but employs a
distinct multi-bit binary encoding strategy (Chen et al., 2015a).
To address the issue of optical crowding, expansion microscopy
(ExM) was integrated into MERFISH (Xia et al., 2019). The
encoding strategy, in conjunction with ExM, allows MERFISH to
reduce the number of hybridization rounds. For example, to
ensure the detection of ~10,000 genes, using 3-color imaging,
seqFISH+ needs 80 (4×20) rounds of hybridization, while
MERFISH only needs 23 rounds to construct a 69-bit HD4 code
with a Hamming weight of 4 (Zhuang, 2021).

In addition to the techniques based on multiplexed FISH, in situ
profiling of RNA can also be achieved by ISS, which sequences
RNA in the fixed tissue or cell sample with in situ signal
amplification. Due to the limited cellular space, some of the ISS-
based techniques select a part of genes by designing probes to
target specific RNA or cDNA. The initial ISS approach published
in 2013 uses padlock probes to bind to targets (Ke et al., 2013),
followed by rolling-circle amplification (RCA) to generate RCA
products for subsequent sequencing by ligation. STARmap uses
two-component padlock probes to directly bind to RNA rather
than cDNA, avoiding the inefficient step of RNA-to-cDNA and
reducing potential noise (Wang et al., 2018). To diminish strong
background fluorescence brought by conventional supported
oligo ligation detection (SOLiD) sequencing, sequencing with
error-reduction by dynamic annealing and ligation (SEDAL) was
devised for STARmap, which allows error rejection during
sequencing.

Besides targeted ISS methods, ISS could be conducted in an
untargeted manner, in which transcripts are reversely tran-
scribed to cDNA, followed by DNA amplification and sequencing
without pre-selection of genes. While the untargeted manner
could improve the coverage to transcriptome-wide, it can also
lead to molecule crowding. To mitigate it, FISSEQ leverages a
partition sequencing strategy (Lee et al., 2015), where only a
small fraction of amplicons is randomly selected and sequenced
using extended sequencing primers, therefore resulting in low
detection efficiency. Combined with ExM, FISSEQ was adapted to
another approach called ExSeq to discriminate between crowded
molecules and increase spatial resolution (Alon et al., 2021).

In general, imaging-based techniques offer high spatial
resolution, reaching cellular or even subcellular levels. Among
these techniques, ISH-based ones, which rely on prior knowledge
of target genes, exhibit high detection efficiency. By comparison,
due to the limitations of ISS, ISS-based techniques have
comparatively low efficiency, especially in untargeted ones.
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Moreover, most of these techniques necessitate specialized
equipment for high-resolution imaging, which may limit their
broader applicability.

Techniques for spatial multi-omics
To achieve a more comprehensive characterization of cells,
considerable efforts have been directed towards the measurement
of other modalities in the spatial context, including genome,
epigenome, proteome, metabolome, and so on (Figure 14D). The
positioning strategies used in ST technologies have been adapted
to realize spatial profiling of other omics. For instance, Slide-
DNA-seq captures spatially resolved genomic sequences using a
barcoded bead array which was initially developed for spatial
RNA profiling (Zhao et al., 2022b). Similarly, spatial-CUT&Tag
(Deng et al., 2022a) and spatial-ATAC-seq (Deng et al., 2022b)
were developed to profile histone modification and chromatin
accessibility by combining DbiT-seq’s microfluidic deterministic
barcoding strategy (Liu et al., 2020b) with in situ CUT&Tag
chemistry and Tn5 transposition chemistry, respectively. To gain
an understanding of 3D chromatin conformation within its
native context, a MERFISH-based method was designed to
visualize over 1,000 genomic loci for high-resolution chromatin
tracing (Su et al., 2020).

In the realm of proteome, protein expression could be readily
visualized by multiplexed immunohistochemistry (IHC). IHC can
be further coupled with imaging mass cytometry (Giesen et al.,
2014) or multiplexed ion beam imaging (MIBI) (Angelo et al.,
2014) to allow the simultaneous imaging of ~100 proteins.
Moreover, proteins of interest can be targeted by DNA-barcoded
antibodies and thus quantified by NGS, as in GeoMx DSP (Merritt
et al., 2020). Cell-surface proteins can be bound by antibodies
without cell lysis, preventing damage to RNA. Therefore,
proteomics could be combined with transcriptomics in both
single-cell and spatial omics. For example, the enhanced version
of 10x Visium conducts IHC prior to mRNA capturing to enable
the co-detection of protein and RNA, albeit only allowing for the
detection of 1–2 proteins. By adding antibody-derived tags to
fixed tissue slides before flow barcoding, DbiT-seq enables the co-
measurement of mRNA and dozens of proteins (Liu et al., 2020b).
Additionally, NanoString offers the CosMx SMI platform,
enabling the quantification of 1,000 RNA and 64 protein
analytes through high-plex imaging (He et al., 2021a).

Metabolites collected from samples are often quantified using
MS. For the study of spatially resolved metabolome, various
techniques have been developed based on imaging mass
spectrometry (IMS). These techniques differ in the manners by
which ions are produced from molecules of samples, including
MALDI (Rappez et al., 2021), DESI (Yin et al., 2019b), and SIMS
(Passarelli et al., 2017). For example, SpaceM is a MALDI-based
method for in situ single-cell metabolomics (Rappez et al., 2021).
It addresses the challenge of assigning metabolite intensities to
individual cells by integrating MALDI-imaging with light
microscopy followed by computational methods for image
segmentation and registration.

In addition to intrinsic genetics, many gene functions are
influenced by the spatial context (Haigis et al., 2019). To study
spatial functional genomics, Dhainaut et al. (2022) established
an approach called Perturb-map, which enables pooled CRISPR
screens at the single-cell resolution in the tissue context. This is
achieved by employing a protein barcode system and multiplex
imaging.

Computational methods for spatial transcriptomics

A standard workflow for single-cell analysis encompasses critical
tasks such as cell clustering, cell-type annotation, differential
expression analysis, lineage tracing, cell-cell communication,
and integration analysis. These tasks also form the backbone of
ST data analysis. Spatial transcriptomics, with its unique
capacity to provide information about spatial proximity and
context, not only broadens the analytical scope but also poses
great integration challenges. To address these, a large number of
computational methods have been developed to integrate gene
expression with spatial information and provide new insights
(Figure 15). We will review the methods designed for different
purposes in the forthcoming sections. A list of published
computational methods is presented in Table S11 in Supporting
Information.

Denoising to enhance the signal in spatial transcriptomics

As discussed above, many ST techniques face challenges related
to low detection efficiency and significant noise. These issues
arise from shallow sequencing for each spatial unit (i.e., spot or
bead) or complex experimental steps needed to preserve the tissue
structure, or a combination of both (Wang et al., 2022f). Wang
et al. (2022f) have shown in 10x Visium and Slide-seq data that
the signal noise was reflected in both the drop-outs and the
inflation of gene expression. While denoising methods have been
developed for scRNA-seq data to address the drop-out problem,
they often struggle to correct the “false” high expression.
Furthermore, these single-cell methods rely solely on transcrip-
tomics data, and thus could not be directly applied to integrate
additional spatial information.

Several computational methods have been specially developed
to tackle the denoising ST data. For example, Sprod could impute
gene expression in noisy ST data from barcoding-based
techniques based on latent graph learning (Wang et al.,
2022f). The denoising process in Sprod involves two steps. First,
Sprod builds a graph by leveraging spatial proximity and
expression similarity. Importantly, if available, features extracted
from the corresponding pathological images could be incorpo-
rated for graph construction. Next, Sprod corrects gene expres-
sion for each spot/bead by borrowing expression information
from the neighborhood revealed in the graph. Another method,
spARC, adopts a similar graph-based framework but demon-
strates its serviceability on imaging-based ST techniques
(Kuchroo et al., 2022). SiGra is also a graph-based method but
employs a different approach to build the graph (Tang et al.,
2022). It utilizes three graph transformer autoencoders for
imaging, transcriptomics, and hybrid, respectively, as well as the
attention mechanism, enabling SiGra to enhance the sparse and
noisy transcriptomics data with multi-modal spatial information.
The SME method in stLearn also allows the integration of image
features to normalize spatial gene expression (Pham et al., 2020).
It employs a simple strategy of weighted average, where the
weights are calculated based on the morphological similarity
between close spots.

Rather than random drop-outs or inflation, Ni et al. (2022)
believed that the loss and inflation are caused by the bleed of
mRNA between and among nearby spots, which is referred to as
spot swapping. To adjust for the effects of spot swapping, they
proposed a method called SpotClean (Ni et al., 2022). SpotClean
employs a probabilistic framework to model gene-specific
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expression at a given spot, which considers reads present in tissue
at that spot and reads bleeding out into other spots, and also
removes reads bleeding in from other spots. The authors
demonstrated that SpotClean could accurately estimate gene-
specific UMI counts in technologies such as ST and 10x Visium,
where background positions could be identified by the alignment
between the ST slide and the matched H&E image.

Subcellular analysis for imaging-based ST data
Imaging-based ST techniques provide good opportunities for
cellular or even subcellular analyses but also pose great
challenges. For these technologies, every measured pixel
represents only one transcript, which is insufficient to infer the
cell type it belongs to. How to merge these single pixels to form a
cell or a sub-cellular structure will be of great significance. In the
current studies, two primary strategies are utilized for the
analysis of high-resolution ST data: segmentation-based or
segmentation-free approaches.

(1) Cell segmentation-based analysis
Cell segmentation, initially proposed in the processing of

microscopic IHC images, provides more information about cell
number and cell morphology. Cell segmentation here is to
determine the cell boundaries based on the sparse measurement
of transcripts, namely to assign transcripts to cells. Conventional
cell segmentation relies on features extracted from the staining
images, including intensity and textures, some of which could
represent the cell boundaries. But for the fluorescent images of
RNA, revealing cell boundaries requires specific staining for cell
membranes, which hampers the segmentation of cells. Most
groups choose to perform additional nucleus staining (e.g., DAPI)
to identify putative nuclei, which are then used to guide the
transcript assignment (Eng et al., 2019; Wang et al., 2018).
Considering that the gene expression in the nucleus region may
not equate to the expression within the whole cell, some of the
groups combine, auxiliary poly(A) staining to inform the soma of
cells (Moffitt et al., 2018; Wang et al., 2018). Several
computational methods have been developed to provide alter-
native solutions.

For instance, Qian et al. (2020) developed pciSeq, which
utilized a probabilistic framework to assign RNA spots to their

Figure 15. Overview of spatial transcriptomics analysis. With spatial gene expression taken as input, as well as optional histology images and matched scRNA-seq, a variety of
analyses could be performed, including data denoising, cell type annotation, spatial domain detection, identification of spatially variable genes (SVG), pseudo-time trajectory
analysis, and cell-cell communication analysis. Besides, subcellular analysis is available for high-resolution data such as imaging-based and high-resolution barcoding-based ST
data. If multiple samples or multiple modalities are provided, integrative analysis can also be performed. To enable these analyses, most of the computational methods rely on
probabilistic modeling or graph building to represent spatial gene expression. For probabilistic modeling-based methods, the spatial dependence between spatial locations could be
modeled by marked point process or Gaussian process, and the gene expression could be modeled by Poisson, negative binomial (NB) or zero-inflated negative binomial (ZINB)
distributions. For graph-based methods, neighborhood graphs could be constructed by specifying a fixed distance, or by k-nearest neighbors (KNN) or Delaunay triangulation
alternatively, and then used as the input of graph-based neural networks for different analysis tasks.
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original cells. To be specific, pciSeq treats the nuclei segmentation
from the DAPI image as the initial approximation of cells, and
models the cellular RNA counts and the gene-cell distance by a
negative binomial distribution and a Poisson process, respec-
tively. With paired scRNA-seq as a reference, the method
estimates the probability of a transcript belonging to a cell and
a cell type simultaneously using variational Bayes inference.
JSTA is another method relying on initial nucleus segmentation
from DAPI staining and matched scRNA-seq reference (Littman
et al., 2021). JSTA can also achieve joint cell segmentation and
cell type annotation through iterative pixel assignment with a
deep neural network (DNN) as a classifier.

Cell segmentation can be implemented in a scRNA-indepen-
dent way. For example, Baysor can perform cell segmentation
based on the expression of transcripts alone (Petukhov et al.,
2022), while also supporting the integration with prior
information from cell-type-specific expression profiles obtained
by scRNA-seq, as well as segmentation from co-stained images to
improve segmentation. Notably, Baysor uses a Markov random
field (MRF) to restrict the relationship between the spatially
proximal molecules. With each cell modeled with a Gaussian
distribution, the entire dataset can be regarded as a mixture of
cell-specific distributions, which could be separable by Bayesian
mixture models (BMMs). Similarly, Sparcle utilizes the Dirichlet
process mixture model for initial cell-type identification and
iteratively assigns each transcript to cells by borrowing informa-
tion from neighboring pixels (Prabhakaran, 2022). Another
method, ClusterMap, also leverages expression from the neigh-
borhood to compute a neighborhood gene composition (He et al.,
2021b), and then formulates the cell segmentation as a point
pattern analysis problem, solvable by the density peak clustering
(DPC) algorithm.

Following cell segmentation, cell-level analyses, such as
differential expression analysis and cell-cell interaction could be
performed as in scRNA-seq. What’s more, further exploration of
subcellular structures within cells becomes possible. For instance,
based on cell segmentation, ClusterMap can further segment cells
into subcellular structures including the nucleus and cytoplasm,
using K-means clustering (Petukhov et al., 2022). Bento, a
toolkit for subcellular analysis of ST data, further enables the
identification of 5-class subcellular localization of RNA tran-
scripts (Mah et al., 2022), including nuclear, cytoplasmic,
nuclear edge, cell edge, and none of the above.

(2) Segmentation-free
The cell segmentation methods discussed above facilitate

single-cell analysis on imaging-based ST data. Nevertheless,
challenges arise from technical noise such as uneven intensity
signals, and biological variation, including various cell sizes and
shapes and different cell densities. These factors can pose
difficulties in achieving accurate cell segmentation, potentially
resulting in deviation in downstream analyses. Therefore, several
segmentation-free methods have been developed to enable robust
analysis without performing explicit segmentation. Most of the
methods aim to assign each molecule pixel to specific cell types
rather than individual cells.

To enable cell-type assignment for pixels, the authors of Baysor
also provide a segmentation-free approach (Petukhov et al.,
2022). It is based on the assumption that the neighboring RNA
molecules are likely to stem from the same cell, collectively
reflecting the transcriptomics profile of the corresponding cell
type. They compute a neighborhood composition vector (NCV)

for each transcript, effectively enhancing one pixel’s signal by
leveraging information from its neighbors. The NCVs are
subsequently treated as “pseudo-cells” for the downstream
clustering and annotation analyses. SSAM provides a similar
solution (Park et al., 2021), which estimates the mRNA signal for
each pixel by borrowing its neighborhood’s information.
Differently, they apply a kernel density estimation (KDE) with a
Gaussian kernel, differing from Baysor, which gives equal
weights to considered nearest neighbors.

Deciphering spatial distribution of cell types by integrating scRNA-
seq
No matter whether tissue samples are profiled by single-cell or
spatial transcriptomics, cell-type annotation is always of great
necessity to decipher cell compositions. The annotation strategy
designed for scRNA-seq, involving unsupervised clustering and
cell-type inference based on expressed marker genes, seems
applicable to the analysis of ST data. Unfortunately, the attempt
does not usually work owing to the limitations of current ST
technologies. First of all, for imaging-based targeted ST techni-
ques, the restricted selection of genes and the presence of read-
out noise can hinder the identification of unknown cell types.
Second, for the low-resolution barcoding-based ST data, the
measurement of the mixture of multiple cells or cell types in each
spot may be averaged, potentially obscuring cell heterogeneity.
Finally, for the high-resolution barcoding-based ST data, the low
detection efficiency also challenges both the manifest clustering
and proper cell-type annotation. As a result, in most cases,
integrating ST data with matched scRNA-seq becomes necessary
to understand the cell-type distribution. Generally, the integra-
tion can be accomplished by two approaches: mapping or
deconvolution.

(1) Cell mapping
Cell mapping includes two aspects: mapping pre-defined cell

types to spatial locations and mapping cells from scRNA-seq data
to the tissue. The former transfers cell type labels from scRNA-seq
to spatial transcriptomics, while the latter predicts the spatial
locations for cells from scRNA-seq, which is also taken as the
spatial reconstruction of scRNA-seq in some cases.

For cell-type mapping, one could calculate the enrichment
score using cell-type-specific gene signatures derived from
scRNA-seq. This method has proven effective in the analysis of
microarray-based ST data of pancreatic ductal adenocarcinomas.
As for the imaging-based ST methods with limited genes, cell
segmentation methods mentioned above, such as pciSeq (Qian et
al., 2020), JSTA (Littman et al., 2021), and Baysor (Petukhov et
al., 2022) could also allow cell-type assignment when scRNA-seq
is available. Alternatively, since these imaging-based ST techni-
ques could provide single-cell level expression after cell segmen-
tation, existing methods designed for single-cell data integration
can be directly applied to integrate single-cell resolution spatial
data and scRNA-seq (Korsunsky et al., 2019; Peng et al., 2021b;
Stuart et al., 2019; Welch et al., 2019). For example, Seurat
projects cells from ST and scRNA-seq to the shared latent space
by canonical correlation analysis (CCA) (Stuart et al., 2019).
With the cell pairs identified by mutual nearest neighbors (MNN)
as anchors, the cell-type labels from scRNA-seq could be
transferred to spatial cells. Similar integration can also be
achieved by LIGER and Harmony. By leveraging the common
latent space and neighborhood information, these single-cell
integration methods can also predict the spatial expression of
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genes missed by ST, and strengthen the original weak signals of
ST-profiled genes.

Spatial reconstruction of scRNA-seq, which predicts the spatial
locations of cells from expression with a few spatial landmark
genes, was initially proposed before the ST technologies boom.
Earlier methods, such as Seurat (v1.0), models ISH reference data
with dozens of genes as a binarized expression map, and then
probabilistically infers a single cell’s location by relating bimodal
mixture models derived from scRNA-seq to the binarized
expression reference (Satija et al., 2015). Achim et al. (2015)
and DistMap (Karaiskos et al., 2017) also utilize binarized ISH
references but adopt different methods to calculate cell-location
correspondence. Achim et al. (2015) designed a scoring scheme
to assess the correspondence between a cell and each spatial
location based on the gene specificity ratio in the given cell.
DistMap calculates Matthew correlation coefficient (MCC) score
using binarized single-cell gene expression and spatial reference,
and then softly assigns cells to spatial locations. A recently
developed method, Tangram is capable of aligning scRNA-seq to
spatial transcriptomics measured by various technologies besides
ISH-based data (Biancalani et al., 2021). By maximizing the
correlation of gene expression shared by scRNA-seq and ST,
Tangram could achieve a probability mapping matrix, which
denotes the probability of finding every single cell in each spatial
location.

Instead of scoring the cell-location correspondence, recent
methods convert the problem of spatial reconstruction of scRNA-
seq to a supervised learning problem or an optimization problem.
For example, DEEPsc formulates the problem of mapping cells to
spatial locations as a supervised classification problem by
training a neural network-based classifier with spatial reference
treated as scRNA-seq (Maseda et al., 2021). The sufficiently
trained DEEPsc network takes the feature vector from a cell as
input and predicts the cell’s spatial origin according to the
likelihood from different spatial locations. Another method,
glmSMA frames cell mapping as a convex optimization problem
(Gu and Liu, 2021). First, it employs Laplacian matrices to
represent the location-to-location physical distance and cell-to-
cell expression distance. By minimizing the differences between
each cell’s and corresponding locations’ expression, glmSMA
could finally find a mapping from cells in scRNA-seq to spatial
locations in ST. SpaOTsc formulates cell mapping as an optimal
transport problem, which aims to minimize the transport cost
from cells to locations (Cang and Nie, 2020). The transport cost
in SpaOTsc is measured majorly based on the gene expression
dissimilarity across scRNA-seq and spatial reference and
combines two penalty terms to handle the unbalanced sample
sizes of two datasets and to preserve the structure within each
dataset, respectively. Similarly, novoSpaRc adopts the framework
of optimal transport, the core of which is the hypothesis that
physically proximal cells share similar expression profiles (Nitzan
et al., 2019). novoSpaRc measures the transport cost by the
combination of location-to-location physical distance and cell-to-
cell expression distance, both computed as the shortest path in
their respective kNN graphs. By minimizing the transport costs,
novoSpaRc finally obtains a certain mapping by which cells are
mapped to locations with the original cell-cell correspondence
preserved as much as possible, accounting for the above
hypothesis. Notably, novoSpaRc also allows de novo reconstruc-
tion of scRNA-seq when reference ST data is not available. Most
of the reconstruction methods are based on the assumption that

the physical proximity could be reflected in expression similarity.
However, the assumption cannot represent all the spatial
distribution patterns of cells, which makes the inferred cell
locations questionable.

(2) Cell type deconvolution
Deconvolution, which aims to estimate the exact cell-type

proportions for each spatial location (i.e., spot or bead) is usually
used in the integration of scRNA-seq and low-resolution
barcoding-based ST data, such as 10x Visium. For the high-
resolution barcoding-based ST techniques, such as Stereo-seq,
the original pixel-level expression is aggregated in a bin-based
manner, and then each bin is treated as a new spatial unit for
deconvolution analysis. Current ST deconvolution methods can
be basically divided into four categories: regression, factorization,
probabilistic modeling, and graph-based.

Regression is one of the most popular methods developed for
bulk RNA-seq deconvolution. Due to the limited number of cells
covered in each spot, the direct application of bulk RNA-seq
deconvolution methods on ST data will lead to noise from
unrelated cell types. To overcome this problem, spatialDWLS, an
ST deconvolution method based on the dampened weight least
square (DWLS) regression, adopts two measures (Dong and
Yuan, 2021). Firstly, the cell-type enrichment analysis is
performed before the accurate estimation of cell-type proportions
to identify possible cell types for each spot. Secondly, after the first
round of deconvolution on the enriched cell types, cell types
predicted to have low proportions are removed to perform
another round of deconvolution.

Methods based on regression highly rely on the selection of
marker genes for each cell type. Instead of performing regression
on a cell-type-specific expression profile, some methods propose
to perform regression on a latent topic profile, which can be
decomposed from single-cell expression data by matrix factoriza-
tion. For example, NMFreg, which was initially developed for cell-
type annotation of Slide-seq, combines non-negative matrix
factorization (NMF) and non-negative least square (NNLS)
(Rodriques et al., 2019). It derives a basis gene-by-factor profile
from pre-labeled scRNA-seq using NMF, and then computes the
factor loadings for each bead using NNLS regression. With each
factor linked to a cell type, the factor loadings serve as cell type
proportions. SPOTlight adopts a similar strategy, but uses a
seeded NMF, in which the combination of cell-type-specific
marker genes and highly variable genes (HVG) is used, and the
factor-by-cell profile is initialized with the cell-cell-type belong-
ingness derived from scRNA-seq (Elosua-Bayes et al., 2021).

Deconvolution can also be achieved with factorization alone.
For instance, STRIDE employs LDA, a topic modeling method, to
derive cell-type-associated topic profiles from scRNA-seq (Sun et
al., 2022). Then, the cell-type compositions of each spot can be
inferred using the pre-trained topic model. Stdeconvolve is also
based on LDA but provides a reference-free solution (Miller et al.,
2022). CARD builds upon NMF, but takes spatial correlation
between spots into consideration by a conditional autoregressive
(CAR) model, which makes CARD a “spatial” deconvolution
method (Ma and Zhou, 2022).

In addition to the intuitive regression or factorization-based
methods, probabilistic modeling approaches have been devel-
oped, assuming that the gene expression in a cell or a spot follows
a specific probabilistic model. For example, RCTD models the
gene expression in each location by a Poisson distribution and fits
each spot as a linear combination of individual cell types (Cable et
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al., 2022). Notably, RCTD also takes platform-specific effects into
account. Cell2location follows a similar concept, but uses NB
distribution to model gene expression instead (Kleshchevnikov et
al., 2022). Likewise, Stereoscope utilizes the NB model, but it
works on the complete set of genes rather than a set of selected
marker genes (Andersson et al., 2020). DestVI also uses the NB
distribution to model each gene’s expression in a cell or a spot,
with parameters encoded and decoded by neural networks (Lopez
et al., 2022). Most importantly, DestVI not only estimates cell-
type proportions, but also recovers cell-type-specific expression in
each spot, which captures the continuous expression variation
within cells of the same type.

Apart from DestVI, there are several other methods based on
neural networks. DSTG first generates pseudo-ST data by
randomly mixing cells from scRNA-seq and then constructs a
link graph across spots from pseudo-ST and real-ST (Song and
Su, 2021). With the link graph, which captures the intrinsic
topological similarity between spots, semi-supervised graph
convolutional network (GCN) is used to estimate cell-type
proportions within each spot in real-ST. CellDART also generates
pseudo-ST data—a virtual mixture of cells—but adopts the idea
of adversarial domain adaptation (Bae et al., 2022). CellDART
integrates two neural-network-based classifiers, in which the
source classifier is trained to predict cell-type compositions, and
the domain classifier is trained to discriminate real spots and
pseudo spots. By iteratively updating two classifiers during
training, the well-trained CellDART model could accurately
estimate the cell-type proportions of each spot from real ST data.
GraphST, another neural-network-based method, adopts a
different strategy (Long et al., 2023). GraphST utilizes a graph
contrastive self-supervised framework to reconstruct the gene
expression for ST data by integrating spatial location information
and local context. Using an autoencoder, GraphST can learn the
latent representation of scRNA-seq separately. Based on the
learned features, a cell-to-spot mapping probability matrix is
trained through a contrastive learning mechanism, which can be
combined with cell-type annotation of scRNA-seq to provide
estimates of cell-type compositions for spots.

Spatial domain identification
Cell type annotation for ST data could depict the spatial
distribution of cell types in the tissue. More than discrete
distribution, we are also interested in how the cell types are
spatially organized to form the tissue architecture and execute
functions. Intuitively, physically proximal cells, no matter from
the same or different cell types, could constitute a spatial
structure, which is usually termed spatial domain. Identification
of spatial domains will help us understand the communication
between cells within the domain and their biological functions
(Jiang et al., 2024). In a sense, a spatial domain can be regarded
as a cluster of cells with specific spatial patterns. The standard
Louvain clustering method for scRNA-seq is based on the graph
built upon gene expression similarity, which does not consider
spatial information and is not directly applicable here. Some
spatial clustering methods modify graph-based clustering algo-
rithms to incorporate the spatial information. For example,
stLearn utilizes Louvain or K-means for global clustering and
performs local clustering to find spatially separated sub-clusters
or merge spatially proximal singleton spots by considering
physical distances (Pham et al., 2020). Another method,
MULTILAYER applies Louvain clustering on the gene-pattern

co-expression graph (Moehlin et al., 2021). At first, MULTI-
LAYER detects expression patterns for overexpressed genes by an
iterative agglomerative strategy. A gene expression pattern here
is defined as a region with the gene overexpressed in multiple
contiguous locations. Then MULTILAYER constructs a graph
where nodes represent previously detected gene patterns, and
edges represent the similarity between gene patterns (i.e., gene
co-expression degree). Finally, the Louvain algorithm is im-
plemented to partition the gene co-expression patterns into
multiple tissue communities.

Instead of incorporating spatial information in indirect ways,
many spatial clustering methods encode the information of
spatial proximity in an MRF, in which the spatial dependence is
formulated by the Potts model. Zhu et al. (2018b) developed
smfishHmrf, which applied hidden Markov random fields (HMRF)
to the identification of spatial domains from seqFISH data. They
first construct a neighborhood graph to represent the spatial
relationship between cells, in which the Markov property keeps
only relationships between immediately neighboring nodes.
Then they model each cell’s domain state by a joint probability
distribution, which considers both the cell’s gene expression and
the domain states of neighboring cells. By solving parameters for
the equilibrium of the field using expectation-maximization (EM),
smfishHmrf enables the detection of spatial domains with
spatially coherent gene expression. BayesSpace adopts a fully
Bayesian statistical model with an MRF to ensure spots from the
same cluster are closer to each other physically (Zhao et al.,
2021a). By using Markov chain Monte Carlo (MCMC) and a fixed
precision matrix across different clusters, BayesSpace is able to
stably estimate model parameters, identify spatial clusters, and
even enhance the resolution of spatial transcriptomics. Given
that MCMC is computationally intensive and the fixed smooth-
ness parameters may limit the performance in different ST
datasets, Yang et al. (2022) proposed SC-MEB to enable both
efficient computation and adjustable smoothness parameters. In
particular, they applied an efficient iterative-conditional-mode-
based expectation-maximization (ICM-EM) scheme to estimate
parameters, and selected the cluster number by the modified
Bayesian information criterion (MBIC). The above MRF-based
methods all assume the hidden cell states to be discrete, limiting
our understanding of spatial dependency among cells. In
contrast, SPICEMIX integrates NMF into HMRF, in which
observed gene expression is modeled as linear mixtures of latent
factors, and the mixing weights of latent factors are regarded as
the hidden cell states (Chidester et al., 2021). SPICEMIX, to
understand it in another way, provides a method of dimension
reduction for ST data by considering spatial information, which
could be the foundation of downstream clustering. Based on the
inferred cell states, hierarchical clustering is further applied by
SPICEMIX to define categorical cell types.

Cell type clustering and spatial domain identification can be
treated as two separate tasks in ST data analysis. Most of the
methods we discussed above focus on identifying spatial domains,
except SPICEMIX, where spatial clustering is intended to infer cell
types without integration with scRNA-seq. Another method,
FICT aims to infer cell types in FISH-based spatial transcriptomics
by spatial clustering (Teng et al., 2022). Specifically, FICT models
the expression of a cell by a cell-type-specific Gaussian distribu-
tion and models the relationship between the cell and its
neighboring cells by a multinomial distribution. FICT is capable
of assigning cell clusters by maximizing the joint probabilistic
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likelihood. Similarly, BASS also models the gene expression in a
cell by a cell-type-specific normal distribution, but meanwhile, it
models the cell type belongingness by a domain-specific
categorical distribution (Li and Zhou, 2022). With such a
hierarchical probabilistic framework, BASS enables simultaneous
cell type clustering and spatial domain detection.

Spatial transcriptomics can be naturally regarded as a spot-
spot graph, which is suitable to be fed to graph-based neural
networks. Many GNN-based methods have been developed to
learn the low-dimensional latent representations from spatial
transcriptomics by integrating gene expression and spatial
information (Cang et al., 2021; Hu et al., 2021a), which can
facilitate the downstream analyses such as spatial domain
identification and detection of spatially variable genes. For
example, SpaGCN applies a GCN to integrate multiple sources
of information, including gene expression, spatial locations, and
histology (Hu et al., 2021a). Firstly, a graph is built to represent
the relationship among spots, where nodes represent spots, and
the distances of the edges are calculated by converting histology
image features to the third “z” coordinate and combining it with
the spots’ original spatial coordinates (x, y). Then a convolu-
tional layer is applied to aggregate gene expression from
neighboring spots in the graph. Based on the aggregated gene
expression, an unsupervised iterative clustering algorithm is then
implemented to identify clusters (i.e., spatial domains).

Other methods introduce additional mechanisms into the basal
GCN. As we discuss in the section on cell-type deconvolution,
GraphST applies a graph contrastive self-supervised framework
to learn the spatial latent representations for ST data by
combining gene expression with spatial location information
and local context information (Long et al., 2023). Another
method, SpaceFlow integrates a deep graph infomax (DGI)
framework into the GCN encoder (Ren et al., 2022). In addition
to a spatial expression graph (SEG) built from spatial transcrip-
tomics, SpaceFlow also constructs an expression permuted graph
(EPG) by randomly permuting expression. The two graphs are
both fed to a graph convolutional encoder to get the low-
dimensional embeddings, and the DGI enables the encoder to
distinguish embeddings of SEG from those of EPG through a
discriminator loss. Some methods take autoencoders for spatial
embedding. For instance, SEDR employs a deep autoencoder
network to learn a low-dimensional latent representation for
gene expression, which is later integrated with spatial informa-
tion using a variational graph autoencoder (VGAE) (Fu et al.,
2021a). STAGATE introduces an attention mechanism to the
autoencoders, enabling adaptive learning of the edge weights (i.
e., spot similarity) (Dong and Zhang, 2022). stMVC constructs a
more comprehensive learning framework (Zuo et al., 2022). To
be specific, stMVC first learns visual features from histology
images through data augmentations and contrastive learning.
Then semi-supervised graph attention autoencoders (SGATE) are
used to learn view-specific representations based on the extracted
visual features and spatial gene expression independently and
integrate two graphs via an attention mechanism. The attention-
based multi-view graph collaborative learning model proposed by
stMVC finally learns a more robust representation of ST data.

Due to ST data’s essence of spatial signals, some methods
translate the problem of spatial domain identification to the
classic image segmentation problem. RESEPT uses GNN to learn
a three-dimensional embedding from a spot-spot graph, with
gene expression treated as the nodes’ attributes and physical

adjacency revealed by edge connectivity (Chang et al., 2022).
The three-dimensional embedding of each spot is transformed to
an RGB scale so that a previous CNN designed for semantic
segmentation can be directly applied to segment spatial domains.
Another method, Vesalius adopts a similar RGB embedding
strategy, but through dimension reduction by UMAP rather than
neural networks (Martin et al., 2022).

Detection of spatially variable genes and gene expression patterns
HVG play a critical role in dimension reduction and subsequent
cell clustering in the analysis of scRNA-seq. In spatial transcrip-
tomics, the identification of spatially variable genes (SVG) is also
important to characterize the functional organization in complex
tissues. To identify SVG is to find genes showing great variation in
space. HVG detection in scRNA-seq only considering the high
variance but ignoring spatial information, cannot be directly
applicable in the SVG identification. Various computational
methods have been proposed to detect SVG from spatial
transcriptomics. Some of the methods identify SVG based on
segmented spatial domains. For example, SpaGCN first identifies
spatial domains by integrating multiple sources of information as
we discussed above and then defines the neighboring domain for
each identified domain (Hu et al., 2021a). The spatially variable
genes are determined by identifying differentially expressed genes
between each target domain and the corresponding neighbor
domain using the Wilcoxon rank-sum test. Instead of relying on
spatial domain identification, most methods directly incorporate
spatial information into the models to study the spatial variance
of gene expression. According to the core models, methods could
be generally divided into three categories: methods based on
statistical modeling, graphs, and other principles.

(1) Based on statistical modeling
Trendsceek models the spatial expression as marked point

processes, where the spatial locations are considered as a two-
dimensional point process, and the locations’ expressions are
treated as marks (Edsgärd et al., 2018). For a given gene and a
specified distance, the dependency between the spatial distribu-
tion of points and their marks is evaluated for all point pairs at the
distance. The dependency assessment could be achieved by four
summary statistics. Stoyan’s mark-correlation, mean-mark,
variance-mark, and mark-variogram. The summary statistics
will remain constant when the marks and the distribution of
marks are independent, but if they are dependent, the statistics
will vary across different distances. Significance is estimated by
permuting the expression values, and the smallest p-value
among different distances is regarded as the significance of the
gene. scGCO also utilizes the marked point process to model
spatial gene expression but integrates HMRF into the model
(Zhang et al., 2022b). For each gene, scGCO segments the graph
representation by a graph cuts algorithm. The segments can be
used as the candidate regions to test the expression’s dependence
on the spatial locations under the complete spatial randomness
framework, where the distribution of points in 2D space is
modeled as a homogeneous Poisson process.

In addition to the marked point process, many methods utilize
the Gaussian process (GP) to model spatial gene expression. GP is
a collection of random variables indexed by time or space, in
which any finite collection of these random variables has a
multivariate normal distribution. GP is widely used in geostatis-
tics and has been applied in modeling spatial transcriptomics. For
example, SpatialDE, based on Gaussian process regression,
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models each gene’s variability with two components: spatial and
non-spatial variance terms. The ratio of these terms can be
calculated to quantify the spatial variability (Svensson et al.,
2018). Statistical significance could be estimated with a log-
likelihood test by comparing the likelihood of the full model with
the null model without spatial covariance. SpatialDE could
further identify genes with different types of spatial variation,
including linear or periodic patterns, by comparing the full model
fitted with a linear or periodic (i.e., cosine) covariance function
with that of the Gaussian kernel. To meet the assumption of
Gaussian distribution, SpatialDE employs a two-step normal-
ization. Specifically, SpatialDE uses a variance-stabilizing trans-
formation method, known as Anscombe’s transformation, to
transform the NB-distributed raw counts followed by regression
of log total counts. Gpcounts also builds on Gaussian process
regression, but adapts it by fitting the spatial counts by NB or
zero-inflated negative binomial (ZINB) distribution rather than
Gaussian distribution (BinTayyash et al., 2021). Similarly,
BOOST-GP models gene read counts through a ZINB distribution
but adopts a Bayesian framework to infer the parameters (Li et
al., 2021b). Another method, SPARK, employs the generalized
linear spatial model (GLSM) with GP modeling the spatial
relationships between spatial locations and Poisson distribution
modeling the expression count data (Sun et al., 2020a).
Moreover, SPARK provides a more powerful statistical method
to control type I errors, which computes p-values for each
parameterized kernel separately and combines them with the
Cauchy combination rule.

With the development of ST techniques, previous methods
need to be modified to adapt to large-scale spatial transcriptomics
data of high sparsity. Based on SPARK, SpatialDE2 improves the
computational efficiency by replacing the Cauchy combination
with the omnibus test and introducing GPU acceleration of
Tensorflow (Kats et al., 2021). In order to reduce the computa-
tional complexity and physical RAM requirement, the authors of
SPARK proposed a scalable non-parametric test method, SPARK-
X (Zhu et al., 2021b). To be specific, SPARK-X builds on a non-
parametric covariance test framework, in which two covariance
matrices are calculated to measure the expression similarity and
spatial proximity, respectively. Then identifying genes with
specific spatial trends is converted to testing the dependence
between gene expression and spatial locations. Another method,
SOMDE incorporates the self-organizing map (SOM) neural
network into the Gaussian process regression framework of
SpatialDE (Hao et al., 2021a). SOMDE condenses the original
spatial locations into SOM nodes with the spatial expression
pattern and the topological structure preserved. The original
spatial expression is then aggregated to form the node-level gene
meta-expression, which significantly reduces the size of the
covariance matrix, and thus increases the computational
efficiency.

(2) Based on graph representation
As discussed in the section on spatial domain identification, the

spatial expression can be represented by a graph. Some graph-
based methods have been demonstrated to be successful in SVG
identification. The graph Laplacian score, commonly used for
graph-based feature selection, can be applied to identify spatially
variable genes from graphs. GLISS, for instance, first builds a
mutual nearest neighbor graph and computes a Laplacian score
for each gene to measure its locality-preserving power (i.e., its
association with local structures) (Zhu and Sabatti, 2020). A low

Laplacian score, within a fixed graph, indicates that similarity of
gene expression occurs in close locations, whereas large variation
occurs in more distant locations (He et al., 2005). The statistical
significance of each gene is estimated by permuting expression
with the graph fixed. RayleighSelection proposed combinatorial
Laplacian scores with the graph-based representation extended
to the simplicial complex representation of spatial expression data
(Govek et al., 2019). Apart from vertices and edges included in
graphs, simplicial complexes also contain higher-dimensional
elements such as triangles and tetrahedrons, which could
capture more complex relations of the data. Accordingly, the
combinatorial Laplacian score facilitates the identification of
genes with more complex spatial structures.

Some methods introduce spatial gridding into the ordinary
graph representation to simplify or optimize the spatial structure.
singleCellHaystack, a spatial-gridding-based approach, was
initially developed to predict differentially expressed genes from
low-dimensional spaces learned from scRNA-seq, independent of
cell clustering (Vandenbon and Diez, 2020). It can also be applied
to the SVG identification of spatial transcriptomics data using the
natural 2D or three-dimensional space. singleCellHaystack first
divides the multi-dimensional space into grids and defines grid
points, which are used to estimate the reference distribution of
cells in the space. Then for each gene, singleCellHaystack
classifies all cells into detected and undetected groups according
to the binarized expression and estimates the cell distribution
separately. Kullback-Leibler divergence is subsequently calcu-
lated to measure the gene’s divergence by comparing it with the
reference cell distribution, and the significance is evaluated by
permutation test. MERINGUE is another method based on spatial
gridding (Miller et al., 2021). It starts by constructing the
neighborhood adjacency relationships using Voronoi tessella-
tion, which is also used for the construction of graph
representation in scGCO. Compared with the k-nearest neighbor
or k-mutual-nearest neighbor, Voronoi tessellation adapts to
varying neighborhood sizes and distances, offering better stability
in tissues with diverse cell types and non-uniform densities. Then
MERINGUE computes Moran’s I for each gene to measure the
spatial auto-correlation, which indicates the expression correla-
tion among spatially adjacent locations. Giotto also provides a
spatial gridding-based method, BinSpect (Dries et al., 2021b).
Similarly, BinSpect relies on Voronoi tessellation to determine the
neighborhood relationships. Instead of Moran’s I, BinSpect
adopts the statistical enrichment analysis. For each gene,
BinSpect binarizes the expression using k-means clustering with
k=2 or simple thresholding on rank. Next, a contingency table is
calculated to reflect the expression dependency between neigh-
boring locations. A Fisher exact test is then employed to obtain
an odds ratio and the corresponding P-value. If a gene is found to
be significant, it tends to be highly expressed in the neighboring
locations.

(3) Based on other principles
In addition to methods rooted in statistical models or graph

representation, there are approaches using entirely different
principles. Sepal proposed a unique strategy founded on the
diffusion theory, which regards the observed gene expression
profile as the outcome of transcript diffusion. Within the
framework of simulation, sepal assumes that it will take more
time for transcripts to form a structured pattern than to reach a
homogeneous random state. Hence, inferring the structured
degree of gene expression patterns is converted to measuring the
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diffusion time in the simulation system. Another method, SPADE
focuses on identifying important genes associated with morpho-
logical features (Bae et al., 2021). SPADE extracts latent image
features from histological images by utilizing a CNN. PCA is then
performed on the high-dimensional features to summarize the
spatial distribution patterns of image features. SPADE uses a
linear model to discover genes correlated with the image patterns
(i.e., PCs), which have been demonstrated to exhibit specific
spatial trends.

To model the spatial variation of gene expression, the methods
discussed above only consider the relative distance between
locations, ignoring the variation along specific directions. SPATA
offers an option for users to manually define a trajectory axis
according to prior knowledge (Kueckelhaus et al., 2020). For
each gene, multiple functions are fitted to model the spatial
variation patterns along the predefined spatial axis, including
linear, logarithmic, or gradient ascending/descending, one-, or
multiple-peak functions. Among all the functions, the best-fitting
one is selected to represent the gene’s dynamics by comparing
the summed residuals.

After spatially variable genes are identified, some methods
further determine archetypal gene patterns through clustering.
By an extended Gaussian mixture model with a spatial prior on
cluster centroids, SpatialDE conducts clustering to group SVGs
with similar spatial expression patterns (Svensson et al., 2018).
Similarly, SPARK implements a hierarchical clustering algorithm
to classify detected variable genes into different categories (Sun et
al., 2020a). Instead of constructing similarity matrices based on
expression, MERINGUE derives a cross-correlation matrix by
computing a spatial cross-correlation index, which is a modifica-
tion of Moran’s I auto-correlation for each pair of genes. This
forms the basis of hierarchical clustering. GLISS fits a spline
model on the latent structure, where each gene can be
represented by the fitted spline coefficients and genes with
similar gene patterns will share similar coefficients. Compared
with expression-based similarity, computing gene-gene similarity
based on spline coefficients could reduce correlation unrelated to
spatial variation. Then GLISS performs spectral clustering on the
coefficients to cluster genes into groups.

Pseudo-time trajectory analysis
From scRNA-seq or ST data, we capture only a snapshot of the
cellular gene expression. The above spatial domain detection or
SVG identification enables us to study the transcriptional
dynamics by space in a discrete or continuous way, respectively.
Previous efforts in pseudotime analysis of scRNA-seq have
provided us with opportunities to reconstruct cell state trajec-
tories from expression data alone. The additional spatial
information brought by ST expands the original pseudotime
analysis by introducing the dimension of space.

Direct application of single-cell pseudotime methods on ST data
may cause cell trajectory to be continuous with time but
discontinuous in space. To address the problem, stLearn adapts
the original pseudotime algorithm by incorporating spatial
information (Pham et al., 2020). stLearn first utilizes the
diffusion pseudotime (DPT) algorithm to predict pseudotime from
gene expression. Then it computes a pseudo-space-time distance
(PSTD) matrix by combining differences in expression-based
pseudotime and spatial distance, with a weight to balance
between them. Based on the PSTD matrix, stLearn constructs a
directed graph and applies a minimum spanning tree algorithm

to determine branches (i.e., to infer cell trajectories).
Instead of relying on the initial pseudotime trajectories inferred

only from gene expression, several methods emerged to predict
the cell trajectories from combined expression and spatial
information. SpaceFlow, which has been discussed in the section
on spatial domain identification, provides a deep learning
framework to learn low-dimensional embeddings from ST data
(Ren et al., 2022). The embeddings produced by SpaceFlow could
be used to calculate the pseudo-Spatiotemporal Map (pSM) using
the DPT algorithm, facilitating the integrative reconstruction of
spatiotemporal trajectories from ST data. Consequently, the
spatiotemporal order generated by SpaceFlow maintains con-
sistency in both space and pseudotime.

Cell-cell communication and gene-gene interaction
Through the aforementioned analyses, we could get a basic
understanding of the spatial distribution of cell types and the
expression variations in space. However, the organization of cells
or cell types, as well as the regulation of genes to generate such
spatial patterns, remain elusive. Many studies have reported that
cellular behavior can be shaped by cell signaling pathways from
the environment. Spatial transcriptomics offers a unique
opportunity to investigate cell-cell communications within the
preserved microenvironment. Several methods have been pro-
posed to explore spatial dependence between cells from ST data,
among which the most intuitive is to study the proximity or the
co-localization of different cell types. Giotto, for instance, adopts a
random permutation strategy to identify the enriched cell-type
pairs (Dries et al., 2021b). With the structure of the neighbor-
hood network fixed, cell-type labels are shuffled among the nodes
to form random neighboring relationships. In this way, the ratio
of observed-over-expected frequencies between two cell types is
determined, and the corresponding enrichment significance can
be estimated. spicyR, originally devised for spatial analysis of in
situ cytometry, defines a score to measure the degree of cell-type
co-localization (Canete et al., 2022). With the spatial distribution
of cells modeled by the marked point process, spicyR applies a K-
function or variance stabilized K-function (i.e., L-function) to
quantify the co-localization between two cell types within a
specific distance. Recently, Cang et al. (2023) developed
COMMOT, based on a collective optimal transport method, to
handle complex molecular interactions and spatial constraints
for inferring paracrine-dependent cell-cell communication in
spatially resolved transcriptomics.

Beyond observed co-localization of cell types, the spatial
dependence among cells can be more complicated, which
needs to be modeled by more complex methods. NCEM
reconciles variance attribution and cell-cell communications
in a node-centric expression model (Fischer et al., 2021).
NCEM first uses the graph structure to enforce a neighborhood
constraint on the cell communications. With the provided cell-
type labels, NCEM applies a function to fit a cell’s observed
gene expression by its cell type and its spatial context. To
accommodate the complexity of the spatial dependencies in
different scenarios, NCEM provides three models, including the
linear, nonlinear, and generative latent variable models,
which are implemented by linear regression, nonlinear
encoder-decoder GNN, and conditional variational autoenco-
der, respectively. By modeling the dependencies of the
molecular states of the target cell (i.e., receiver) on the
neighborhood (i.e., sender), NCEM can also determine the
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directionality of the sender-receiver signaling.
Instead of modeling the entire expression profile’s dependence

on cell-cell communications, several methods quantify the effect
of cell-cell interactions on expression for each gene individually.
For instance, SVCA models the expression of a target gene
across cells with the Gaussian process model and decomposes
the gene’s variability into three components, including intrinsic
effects, environmental effects from unmeasured spatial vari-
ables, and cell-cell interaction effects from neighboring cells
(Arnol et al., 2019). In this manner, the fraction of variance
explained by each term can be estimated for each gene, and the
biologically relevant genes participating in cell-cell interactions
can be identified. MISTy designs a multi-view framework to
account for the expression of individual genes, where cell-cell
interactions from different spatial contexts are modeled in
different views (Tanevski et al., 2022). Similar to SVCA, MISTy
includes intraview, juxtaview, and paraview, which correspond
to intrinsic effects from gene expression of other genes in the
same location, effects from immediate neighbors, and effects
from the tissue architecture (i.e., cells within a radius of the
specified cell), respectively. By analyzing each predictor gene’s
importance to the target gene in each view, the effects from
different spatial contexts can be explainable for the gene pair of
interest.

SVCA and MISTy can model the gene-gene relations, and
discover genes associated with cell-cell interactions, but
neither of them can identify explicit gene-gene interaction
pairs. Yuan and Bar-Joseph (2020) developed GCNG, a GCN-
based supervised computational framework, to predict gene-
gene interactions. GCNG takes the graph representation of
spatial neighborhood as input, as well as the normalized
expression of candidate gene pairs. The output will be the
classification of the interacting or non-interacting gene pairs.
To enable supervised learning, known ligand-receptor inter-
actions from a curated list are labeled as positive pairs, and
randomly selected ligand-receptor pairs are labeled as negative
data. With a five-layer GCN structure, GCNG could predict new
gene-gene interactions in the studied ST dataset. However,
GCNG cannot inform the cell types where interactions occur,
and cannot focus on interaction inference within specific local
regions of interest either. To address these limitations, some
methods rely on the co-expression of ligands and receptors by
taking cell-type locations into consideration (Dries et al.,
2021b; Garcia-Alonso et al., 2021; Pham et al., 2020). For
example, MERINGUE further constrains the spatial cross-
correlation calculation between pairs of genes to the curated
ligand-receptor pairs and two cell types of interest (Miller et al.,
2021). Garcia-Alonso et al. (2021) upgraded their Cellpho-
neDB to v3.0, which identifies ligand-receptor pairs within
specific microenvironments where cell types of interest are co-
localized. Similarly, based on the cell-type proximity analysis
in the previous step, Giotto defines a ligand-receptor interac-
tion score by calculating the weighted average expression of
ligands and receptors in the cell subsets of interacting cell
types.

Integrative analysis of spatial data
With increased throughput and decreased costs, some studies
generate ST slides from multiple individuals to perform large-
scale analysis. Some other studies produce a series of ST slides
from multiple adjacent layers of the tissue, enabling a global view

of the whole tissue. Conducting separate analyses on individual
ST slides may diminish the power of multiple samples. Thus,
integration methods are required to perform a joint analysis of
multiple samples. Moreover, with additional information such as
morphologies provided, spatial transcriptomics should be inte-
grated with other modalities to comprehensively characterize the
tissue. In this section, we will review computational methods for
the integration of multiple samples and the integration of spatial
data from various modalities.

(1) Multi-sample integration
The core of multi-sample integration involves placing multiple

samples in the same space, referred to as common coordinate
framework (CCF). The coordinate system encompasses two
facets. On one hand, CCF can represent the natural three-
dimensional space, in which multiple plane slides are aligned and
stacked to provide a stereoscopic view of tissues. On the other
hand, high-dimensional spatial measurements of location from
multiple samples could be projected into a shared low-dimen-
sional space for integrative analyses such as joint spatial domain
identification.

Some methods have been developed to align multiple
sequential slides from the same tissue. PASTE formulates the
multi-slide alignment as an optimal transport problem, which
computes the probabilistic alignment based on both gene
expression and spatial information (Zeira et al., 2022). By
minimizing the transport cost, PASTE could achieve a mapping
that maximizes gene expression similarity between aligned
locations across slides while preserving spatial structure within
a slide. PASTE can align multiple sequential slides from the same
tissue, but cannot be applied to the integration of slides from
different time points. Andersson et al. (2021a) proposed a
method, eggplant, which is a landmark-based method to project
multiple slides into the common reference. First, eggplant
projects the measured spatial locations to the reference by
making the distance between landmarks conserved before and
after transformation. Next, eggplant applies the Gaussian Process
Regression to learn the relationship between the gene expression
and the distance to the landmarks for all landmark-excluded
locations, allowing prediction of gene expression for each
location in the reference. With the strategy of location
transformation combined with expression prediction, multiple
slides at different time points or from different individuals could
be transferred to the same reference for integrative analysis.
However, eggplant necessitates not only the selection of land-
mark locations but also the definition of reference, which is
usually a canonical structure representing the tissue domain.
Both requirements limit eggplant’s application on more compli-
cated tissues such as tumors. To address this issue, Jones et al.
(2022a) developed GPSA, which is also based on the Gaussian
process model. GPSA constructs a two-layer Gaussian process
framework, where the first layer maps the measured spatial
locations to a common coordinate system, and the second layer
describes the spatial gene expression within this system.
Compared with eggplant, GPSA could iteratively estimate the
common coordinate system de novo, but it also offers an option for
template-based alignment with a pre-defined common coordinate
system by fixing one slide.

Instead of mapping spatial locations from multiple slides to the
CCF in the natural 3D space, several methods focus on projecting
multiple samples to a shared low-dimensional space. In this case,
integration methods should be capable of removing unwanted
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variations from different batches and preserving the meaningful
biological variations as in scRNA-seq. But different from single-
cell integration methods, ST integration methods should take
into account spatial information. Liu et al. (2022) proposed
PRECAST, a unified and principled probabilistic model, to jointly
estimate low-dimensional embeddings and perform spatial
clustering across multiple tissue slides. PRECAST performs
dimension reduction on the normalized gene expression using
the intrinsic conditional autoregressive (CAR) model, which
could preserve the original spatial dependence among neighbors
in the low-dimensional space. The resulting latent low-dimen-
sional embedding could be further employed to perform spatial
clustering using an HMRF model. As we mentioned above, BASS
enables multi-scale analysis for simultaneous cell type clustering
and spatial domain detection. It also allows the multi-sample
integration analysis by jointly modeling the Harmony-corrected
spatial transcriptomics with a hierarchical Bayesian framework.
Another method, MAPLE proposed a hybrid framework for joint
spatial clustering of multiple sections, following the spatially
aware low-dimensional embedding learning via a GCN-based
model (Allen et al., 2022).

(2) Multi-modal integration
As we discussed above, single-cell and spatial transcriptomics

are usually integrated to decipher the spatial distribution of cell
types through cell mapping or cell-type deconvolution. Among
the integration methods we reviewed, Tangram stands out by
enabling the mapping of data from other modalities onto the
spatial transcriptomics through integration with multi-modal
single-cell data. For example, once the single cells from SHARE-
seq are mapped to spatial locations by gene expression similarity,
the spatial patterns of chromatin accessibility can be unveiled.

Considering that many ST technologies provide corresponding
histological images, many computational methods leverage the
additional image information to enhance the analytic perfor-
mance at each step. For example, stLearn leverages morpholo-
gical similarity to normalize the expression data, thereby
reducing the impact of technical noise of dropouts (Pham et al.,
2020). spaGCN takes the histology image features into con-
sideration when calculating spot-spot distances to construct a
graph for spatial transcriptomics (Hu et al., 2021a). stMVC
employs graph networks with the attention mechanism to
integrate multi-source information including histological fea-
tures, and ultimately learns the low-dimensional embedding of
ST data (Zuo et al., 2022). Likewise, methods such as conST
(Zong et al., 2022) and MUSE (Bao et al., 2022) also use deep
learning architectures to integrate cell morphologies and
transcriptional states for joint representation. Instead of the
complex deep learning-based mechanism, SPADE directly associ-
ates the spatial variance of gene expression with the spatial
distribution patterns of image features using a linear regression
model (Bae et al., 2021).

In addition to facilitating the analysis of spatial transcrip-
tomics, the histological images could also be used to predict
spatial gene expression. Many methods have been developed to
address such a problem. To overcome the limitation of low
resolution in some barcoding-based ST technologies, Bergen-
stråhle et al. (2022) proposed a deep generative model to infer the
super-resolved expression maps from high-resolution histology
images, both within and between the originally measured
locations. Rather than focusing on improving the resolution of
spatial gene expression, some methods generalize the spatial

transcriptome prediction to the histopathology images without
matched expression data. For example, He et al. (2020a)
introduced a deep learning algorithm, ST-Net, to capture gene
expression heterogeneity by combining spatial transcriptomics
and histology images. With the model trained with a BRCA
spatial transcriptomics dataset comprising 68 ST slides of breast
tissue sections, it can predict the spatially resolved transcriptome
of other breast cancer datasets directly from histology images.
However, ST-Net does not account for spatial dependencies
between spots. HisToGene employs a modified Vision Transfor-
mer model to enable the prediction of spatial gene expression
with the spot dependency considered (Pang et al., 2021).
Building upon HisToGene, Hist2ST additionally includes a
Convmixer module to capture the internal relations of 2D vision
features within image patches (Zeng et al., 2022b).

Applications

The recent and rapid progress in spatial transcriptomics has
promoted its widespread application across various biological
systems. ST techniques have been instrumental in spatially
characterizing the cell states of healthy tissues, and some of them
aim to decipher the spatial architecture of tissues at specific
developmental stages. Notably, among the tissues, the nervous
system has been a focal point of investigation. Numerous studies
have made substantial contributions to constructing detailed
spatial atlases for the brain. Moreover, ST techniques have
proven invaluable in exploring the microenvironments of injured
or diseased tissue, including mouse lungs infected with virus
(Boyd et al., 2020), human hearts with myocardial infarction
(Kuppe et al., 2022), as well as a range of different tumor types (Ji
et al., 2020a; Qi et al., 2022; Wu et al., 2021a; Wu et al., 2021b;
Wu et al., 2021d). Here we review the applications of ST in three
main fields, encompassing the development and homeostasis of
healthy tissues, neuroscience, and the tumor microenvironment.

(1) Development and homeostasis of healthy tissue
Most of the studies utilize mouse models to investigate the

development of early mammalian embryos. Spatial atlases have
been established for several stages of mouse embryonic develop-
ment. Peng et al. (2019) focused on lineage differentiation and
morphogenesis at the post-implantation stages. Geo-seq was
applied to profile cell populations at pre-selected positions in all
germ layers from pre-gastrulation (embryonic day I5.5) to late
gastrulation (E7.5). The study unveiled the dynamic molecular
regulation of lineage specification and tissue patterning in time
and space. Moreover, they also uncovered the pivotal role of
Hippo/Yap signaling during germ-layer development. To further
explore the cell fate decisions in the early organogenesis at the
end of gastrulation, Lohoff et al. (2022) performed seqFISH on
multiple sagittal sections collected from mouse embryos at E8.5–
E8.75. Due to the limited number of target genes, they integrated
seqFISH with existing single-cell transcriptome atlases to enable
genome-wide imputation. By utilizing the generated spatial
single-cell map, the authors revealed spatial patterns of gene
expression corresponding to dorsal-ventral and rostral-caudal
axes in the midbrain and hindbrain region and discovered early
dorsal-ventral separation in the gut tube. Recently, Chen et al.
(2022) applied high-resolution Stereo-seq to whole mouse
embryos at the mid and late-gestation stage spanning from
E9.5 to E16.5 and eventually constructed a mouse organogenesis
spatiotemporal transcriptomic atlas (MOSTA).
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Moving beyond early embryonic development in mice, many
researchers have taken advantage of spatial transcriptomics to
explore the spatially dependent mechanisms driving the devel-
opment of organs or tissues in humans. For example, Crosse et al.
(2020) utilized the LCM-based RNA sequencing to enable
spatially resolved profiling of the developing hematopoietic stem
cell (HSC) niche in human embryos at Carnegie stage (CS)16–
CS17 (i.e., 39–41 post-conception days). They analyzed the
dorsoventral polarized signaling in the aorta and identified
ventrally secreted endothelin as an important secreted regulator
of early human HSC development. In the study of the developing
human heart, Asp et al. (2019) characterized different anatomi-
cal regions of human hearts at three developmental stages (4.5–
5, 6.5 and 9 post-conception weeks) using the ST technology.
With the integration of scRNA-seq and ISS, a comprehensive
spatial map was created, providing detailed information about
cell subtype localization during human cardiogenesis. Similar
strategies were applied to the developmental study of the human
intestine ranging from 8 to 22 PCW (Fawkner-Corbett et al.,
2021). In addition to generating a spatiotemporal atlas of human
intestinal development, they also revealed how morphogen
gradients direct cellular differentiation. Spatial transcriptomics
has also been applied to the study of cell-type atlas and
homeostasis maintenance in healthy tissues of adults, which
could serve as a reference to be compared with diseased tissues.
Shen et al. (2024) applied the Stereo-seq technology to draw an
ST atlas of the human gingiva. By identifying periodontitis-
relevant effector cells, genes and pathways, the ST results may
aid in the development of new therapeutic strategies for
periodontitis. By combining scRNA-seq, snRNA-seq, and 10x
Visium ST, Madissoon et al. (2021) created a spatial multi-omics
atlas of the human lung and airway, which comprises various
novel and known cell types. The spatial lung atlas also revealed
specific tissue microenvironments, such as the gland-associated
lymphoid niche (GALN), which may play a role in preventing
respiratory infections. In another study of the human uterus,
Garcia-Alonso et al. (2021) also applied multi-omics technologies
to construct a comprehensive cellular map of human endome-
trium, characterizing the spatiotemporal dynamics across the
menstrual cycle. In particular, further spatial interaction
analyses revealed the role of NOTCH and WNT signaling
pathways in shaping the differentiation of ciliated and secretory
cell lineages. With the accumulation of ST data, it is foreseeable
that in the near future, integration of multi-source tissue maps
will lead to the establishment of a comprehensive reference
spatial atlas of the entire human body.

(2) Neuroscience
The explicit layered structures and distinct anatomical regions

make the brain an appropriate material to validate newly
developed spatial transcriptomics technologies. In return, these
ST techniques significantly enhance our understanding of the
spatial architecture of brains. Many efforts have been devoted to
building reference maps of the brain. Due to the limited size of
fields of view and intensive-labor nature of early imaging-based
ST techniques, most of the studies focused on specific subregions
in the mouse brain. For example, Codeluppi et al. (2018)
developed osmFISH and employed the methodology to define the
spatial cellular organization of the somatosensory cortex, cover-
ing only 33 targeted marker genes and around 5,000 cells.
During the same time, Moffitt et al. (2018) generated a spatial
molecular map of neurons in the hypothalamic preoptic region

by coupling MERFISH with scRNA-seq. Similarly, other sub-
regions of the brain, such as the visual cortex (Wang et al.,
2018), the primary motor cortex (Zhang et al., 2021a), the
hippocampus (Alon et al., 2021; Shah et al., 2016), and the
cerebellum (Kebschull et al., 2020), have been profiled by
different imaging-based ST techniques to establish detailed
spatial cellular organization maps.

Thanks to the development of high-throughput barcoding-
based ST techniques, a molecular atlas of the whole adult mouse
brain was established by Ortiz et al. (2020). They utilized the ST
technology to profile spatial gene expression of 75 adjacent
coronal sections collected from one brain hemisphere along the
anteroposterior axis. Through alignment with the Allen mouse
brain atlas (ABA), they constructed a complete brain atlas,
offering 3D tissue coordinates and detailed ABA neuroanatomi-
cal definitions. More importantly, they also defined new area-
and layer-specific subregions in the molecular atlas by unsu-
pervised classification. Whether the entire brain or specific
subregions are profiled, these atlases together will be of great
value to experimental neuroscience, ultimately extending our
knowledge about the structure-functional relationships of the
brain.

In addition to revealing the spatial organization of cell types in
normal brains, spatial transcriptomics can be extended to the
study of neurodegenerative or psychiatric diseases, uncovering
spatially relevant mechanisms of dysfunction or dysregulation in
the nervous system. For example, Chen et al. (2020b) combined
the ST technology with ISS to capture the transcriptional
changes in the vicinity of amyloid plaques in Alzheimer’s disease
(AD). In particular, they identified two gene co-expression
networks that might be responsive to amyloid plaque deposition
in AD. In a study of amyotrophic lateral sclerosis (ALS), Maniatis
et al. (2019) employed the ST technology to characterize the
spatiotemporal dynamics over the progress of the disease by
utilizing murine models of ALS at different stages. Combining
with postmortem tissues from ALS patients, they discerned
shared spatial patterns of perturbations in transcriptional path-
ways associated with ALS pathology.

As ST technologies continue to improve in resolution and
detection efficiency, we anticipate the establishment of more
detailed and comprehensive atlases of the nervous system. These
resources will undoubtedly be invaluable for exploring the
structure-function relationships of circuits and behaviors.

(3) Tumor microenvironment
Although single-cell transcriptomics has shed light on the cell-

type compositions and their functions in the intricate TME, it
remains unexplored how these cells are spatially organized to
control or promote tumor progression. Spatial transcriptomics
makes it possible to study different cell populations and signaling
pathways with the spatial context preserved. Generally, tumor
microenvironments might include tumor cells, stromal cells, and
immune cells. Initial research efforts often concentrate on the
interior heterogeneities of tumor regions. In a single-cell and
spatial atlas study of human breast cancer (BRCA), Wu et al.
(2021d) derived seven gene modules from scRNA-seq to describe
the intratumor transcriptional heterogeneity. The enrichment
analysis revealed two gene modules mutually exclusive in the
tumor regions, which were related to the EMT and proliferation
states, respectively. In another study of primary liver cancer, five
cancer stem cell (CSC) populations were defined, which showed
different distribution patterns in different regions, including the
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leading edge, tumor, and high-grade portal vein tumor throm-
bosis (Wu et al., 2021b). Of note, the fraction of PROM1+ CSCs
was higher in portal vein tumor thrombosis than in the tumor
region, potentially exerting a crucial role in the tumor progres-
sion.

Centered on the tumor region, the relative spatial distribution
of immune or stromal cell types could be revealed by spatial
transcriptomics. In the study of human squamous cell carcinoma
(SCC), Ji et al. (2020a) discovered that B cells were infiltrated in
the tumor, while regulatory T cells, macrophages, and fibroblasts
were abundant at the tumor-stromal border. Conversely, CD8 T
cells were notably excluded from the tumor. Similarly, different
cell subtypes or states also reveal different spatial patterns. Wu et
al. (2021d) identified both inflammatory-like cancer-associated
fibroblasts (iCAFs) and myofibroblast-like CAFs (mCAFs) in the
TME of breast cancer, yet the two subtypes exhibited markedly
distinct spatial distributions. mCAFs were found to be enriched in
invasive cancer regions, while iCAFs were dispersedly distributed
across invasive cancer, stroma, and lymphocytes-aggregate
regions. Some studies are interested in the molecular and cell-
type patterns in the tumor-stromal border, namely the invasive
fonts of tumors (Hunter et al., 2021). Wu et al. (2021a)
characterized the dynamics of cell-type abundance across the
invasive fonts and found an immune suppressive microenviron-
ment in the area near the borderline.

The spatial analysis could also recognize some patterned
structures and characterize them in the tumor microenviron-
ment. In the abovementioned study of liver cancer (Wu et al.,
2021b), unsupervised clustering of ST spots revealed a cluster
characterized by high expression of tertiary lymphoid structures
(TLS)-related genes, such as CXCL13, CCL19, CCL21, LTF, and
LTB. The pathological examination validated the presence of
TLSs. Then, Wu et al. (2021b) defined a TLS-50 signature to
locate TLSs in other tissue sections, which was also found to be
associated with more favorable prognosis in HCC patients in
TCGA. Similarly, Andersson et al. (2021b) also identified TLSs in
HER2-positive breast cancer. To further investigate how TLSs
influence the response to immunotherapy in cancer, Meylan et
al. (2022) used spatial transcriptomics to examine the nature of B
cell responses within TLS in renal cell carcinoma (RCC). They
discovered that TLSs could generate and propagate anti-tumor
antibody-producing plasma cells, which is associated with
response to immunotherapy.

Cellular communications are known to play important roles in
the immune surveillance or escape of tumors, as well as tumor
progression. With the spatial distribution of cell types revealed by
cell-type deconvolution or cell mapping analysis, cell-type
proximity or colocalization patterns could also be recognized.
Moncada et al. (2020) identified the colocalization of inflamma-
tory fibroblasts and stress-response cancer cells by mapping
scRNA-seq-defined cell types to ST of pancreatic ductal adeno-
carcinomas. Similarly, with the integration of scRNA-seq and ST
in SCC, a fibrovascular niche was found to surround a tumor-
specific keratinocyte population (Ji et al., 2020a). Further
interaction analysis revealed the colocalization might be
mediated by multiple ligand-receptor pairs. In another study of
colorectal cancer, spatial transcriptomics and immunofluores-
cent staining demonstrated the co-existence of FAP+ fibroblasts
and SPP1+ macrophages, which was associated with poor
patient survival (Qi et al., 2022).

With the development of spatial multi-omics techniques,

additional facets such as cell crosstalk and metabolic states, will
be characterized to gain more insights into the complexity of the
tumor microenvironment. Understanding the tumor microenvir-
onment will facilitate the identification of therapeutic targets and
the design of anti-tumor drugs.

Summary

This chapter provides a comprehensive overview of current
advancements in spatial transcriptomics, encompassing techni-
cal innovations, computational methods, and diverse applica-
tions. Spatial transcriptomics has revolutionized our
understanding of tissue organization and cellular heterogeneity,
enabling high-resolution visualization of gene expression pat-
terns within intact tissues. The development of computational
methods has facilitated the integration and interpretation of
spatial transcriptomics data, unveiling spatial regulatory me-
chanisms and novel molecular interactions. Spatial transcrip-
tomics has been successfully applied in various fields, including
developmental biology, neuroscience, cancer research, and
immunology, with the potential to accelerate biomarker dis-
covery and personalized medicine approaches. Spatial transcrip-
tomics represents a transformative approach and will continue to
be refined to reshape our understanding of complex biological
systems. We anticipate it will offer profound insights into tissue
homeostasis and disease mechanisms.

Chapter 8 Single-cell CRISPR screening technology

The clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 system is a revolutionary approach to edit the
mammalian genome (Cong et al., 2013; Mali et al., 2013). With
the development of lentiviral delivery methods, CRISPR screen-
ing technology emerged and has enabled genome-wide knockout
in a cost-effective manner (Koike-Yusa et al., 2014; Shalem et al.,
2014; Wang et al., 2014a). However, CRISPR screening can
only analyze genes with very distinct phenotypes, such as those
that significantly affect cell growth or those that can be detected
directly with antibodies or fluorescent proteins.

In 2016, a new technique, called single-cell CRISPR screening
(scCRISPR-seq), was developed that coupled CRISPR perturba-
tions and single-cell sequencing to enable pooled genetic screens
at large-scale single-cell resolution (Adamson et al., 2016; Dixit
et al., 2016; Jaitin et al., 2016). The key technical innovation of
scCRISPR-seq is the creative design of the lentiviral vector, called
the Perturb-seq vector, to allow the identification of sgRNA in
each cell from sequencing (Figure 16A). scCRISPR-seq can
facilitate high-throughput functional dissection of complex
regulatory mechanisms and heterogeneous cell populations.

In this chapter, we will comprehensively review scCRISPR-seq
in four distinct parts. Firstly, we will introduce representative
technologies within each category of scCRISPR-seq. Secondly, we
will delve into the primary tools that have been specifically
developed for the analysis of scCRISPR-seq data. Thirdly, we will
explore notable applications of scCRISPR-seq. Finally, we will
draw conclusions and engage in a discussion of the limitations
and future trends associated with scCRISPR-seq.

The category of scCRISPR-seq platforms

Currently, numerous alternative scCRISPR-seq platforms have
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emerged (Table 5). Based on the integrated omics approach of
scCRISPR-seq, these platforms can be classified into three
primary categories: transcriptome-based scCRISPR-seq, epigen-
ome-based scCRISPR-seq, and multimodal scCRISPR-seq.

Transcriptome-based scCRISPR-seq
The main scCRISPR-seq platforms are transcriptome-based
applications that combine CRISPR screens with single-cell
RNA-seq. For transcriptome-based scCRISPR-seq, the Perturb-
seq vector is generally composed of single-guide RNA (sgRNA),
cell barcode (CBC), gene barcode (GBC), and UMI, such as
Perturb-seq (Adamson et al., 2016; Dixit et al., 2016) and CRISP-
seq (Jaitin et al., 2016). In the Perturb-seq vector, sgRNA is used
to direct Cas9 nucleases to induce double-strand breaks at
targeted genomic regions and CBC is used to tag each cell, while
GBC is used to tag each sgRNA and UMI is used to tag each
transcript. Perutrb-seq and CRISP-seq are the first scCRISPR-seq
platforms to be developed. These approaches involved complex
construction of the Perturb-seq vector, including complex
cloning strategy and sometimes the decoupling of the gRNA
spacer and its barcode, which limits their versatility. The CROP-
seq (Datlinger et al., 2017) optimizes the design of the Perturb-
seq vector to allow the detection of sgRNA induced in each cell
coupled with mRNA by adding Poly-A tail to the Perturb-seq
vector, which greatly reduces the complexity and cost of
scCRISPR-seq. However, Hill et al. (2018) demonstrated that
the lentivirus swap rate of existing studies was only about 50%
because of the Perturb-seq vector designs of these studies. Thus,
they optimized CROP-seq vector designs by serving the guide
RNA as the barcode to improve the swap rate to 94%. Due to
constraints on Perturb-seq vector design, each lentiviral vector of
Perturb-seq and CRISP-seq can only deliver a single encoded
sgRNA to cells, and CROP-seq enabled the delivery of paired
sgRNAs to cells. That is, they are all incompatible with the
delivery of multiple sgRNAs. To solve this problem, Replogle et al.
(2020) designed direct-capture Perturb-seq, in which expressed
sgRNAs are sequenced alongside single-cell transcriptomes and
enable the delivery of multiple sgRNAs. Direct-capture Perturb-
seq is particularly valuable for the mechanistic dissection of
genetic interaction. It further reduces the cost of Perturb-seq
experiments. Direct-seq (Song et al., 2020) has similar functions

as direct-capture Perturb-seq that enables CRISPR perturbation
and its transcriptional readouts profiled together and supports
the delivery of multiple sgRNAs. In 2022, the genome-scale
Perturb-seq method was introduced by Replogle et al. (2022),
enabling unbiased and comprehensive profiling of genome-scale
genetic perturbations affecting 9,867 genes. This breakthrough
facilitated systematic gene function assignment and the explora-
tion of complex cellular phenotypes. More recently, Li et al.
(2023) developed the CRISPR-human organoids-single-cell RNA
sequencing (CHOOSE) system. This innovative system enables
genetic disruption and single-cell transcriptomics for pooled loss-
of-function screening in mosaic organoids.

However, all the aforementioned scCRISPR-seq platforms are
limited to in vitro applications. In contrast, in vivo assays are more
attractive due to their closer resemblance to real organic
conditions. Therefore, Jin et al. (2020b) developed in vivo
Perturb-seq, a variation of the Perturb-seq protocol that involves
pooled perturbations conducted in vivo. Furthermore, PoKI-seq
(Roth et al., 2020) has demonstrated the feasibility of in vivo
investigation of the immunological response of reprogrammed T
cells to solid tumors. Recently, Santinha et al. (2023) developed
adeno associated virus (AAV)-mediated direct in vivo single-cell
CRISPR screening, termed AAV-Perturb-seq, a tunable and
broadly applicable method for transcriptional linkage analysis
and phenotyping of genetic perturbations in vivo.

Epigenome-based scCRISPR-seq
In addition to transcriptome applications, there are also
epigenetic-based scCRISPR-seq platforms. In 2019, Rubin et al.
(2019) developed Perturb-ATAC, a method that combines
CRISPR interference or knockout with chromatin accessibility
profiling in single cells based on simultaneous detection of
CRISPR guide RNAs and open chromatin sites by assay of
transposase-accessible chromatin with sequencing (ATAC-seq).
They applied this method to determine the roles of a diverse set of
trans-regulatory factors, including TFs, chromatin modifiers, and
human and viral ncRNAs, which may be useful for dissecting loci
where both cis-regulatory elements and ncRNA transcripts have
been shown to have effects on gene expression (Cho et al., 2018b;
Engreitz et al., 2016; Rubin et al., 2019). Perturb-ATAC expands
scCRISPR-seq research into the epigenome field, making

Figure 16. Overview of scCRISPR-seq. A, General schematic of scCRISPR-seq platform. NGS, next generation sequence. B, Bioinformatic analysis of scCRISPR-seq data.
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scCRISPR-seq more powerful and broader applications. However,
Perturb-ATAC is constrained by high costs and low throughput.
In response to this limitation, Spear-ATAC (Pierce et al., 2021)
was developed to achieve significantly higher cell throughput
and a substantial cost reduction, offering a more practical
alternative. Additionally, CRISPR-sciATAC (Liscovitch-Brauer et
al., 2021) demonstrated similar cell throughput and cost to
Spear-ATAC. However, it exhibited limited sensitivity to subtle
changes in chromatin accessibility.

Multimodal scCRISPR-seq
Multimodal single-cell assays provide high-resolution snapshots
of heterogeneous cell populations, but the scCRISPR-seq plat-
forms above are all limited to one modality, such as transcrip-
tome or epigenome. Thus, to apply the technique to multi-omics
simultaneously, multimodal scCRISPR-seq was developed. Xie et
al. (2017) developed mosaic single-cell analysis by indexed

CRISPR sequencing (Mosaic-seq) to perturb enhancers and
jointly measure each cell’s transcriptome and its induced sgRNA.
Mosaic-seq provides a novel tool to interrogate the functions of
noncoding genes in a perturbation-based manner. In addition,
Mimitou et al. (2019) developed expanded CRISPR-compatible
cellular indexing of transcriptomes and epitopes by sequencing
(ECCITE-seq), which allowed simultaneous detection of tran-
scriptomes, proteins, clonotypes, and CRISPR perturbations from
every single cell. By constructing a 49-marker panel of ECCITE-
seq antibodies to profile human peripheral blood mononuclear
cells (PBMCs), they recovered many important results (Fanok et
al., 2018; Stoeckius et al., 2017), demonstrating the power of
ECCITE-seq to combine immunophenotype, clonotype, and
transcriptome information. Spatial transcriptomics is able to
characterize gene expression profiles while retaining information
about the spatial tissue context, which provides new insights into
different fields of biology, such as neuroscience, developmental

Table 5. The different scCRISPR-seq platforms

Platforms Omics In vivi/vitro Subject
sgRNA sequenced
directly without

barcode

No. of delivery of
sgRNAs Coupled CRISPR system References

Perturb-Seq Transcriptome In vitro K562 no Single CRISPR knockout (Dixit et al., 2016)

Perturb-seq Transcriptome In vitro K562 no Single CRISPR interference (Adamson et al.,
2016)

CRISP-seq Transcriptome In vitro Mouse BMDCs no Single CRISPR knockout (Jaitin et al., 2016)

CROP-seq Transcriptome In vitro Jurkat yes Paired CRISPR knockout (Datlinger et al.,
2017)

Mosaic-seq Multimodal (Transcrip-
tome, enhancer) In vitro K562 no Single CRISPR interference (Xie et al., 2017)

Improved CROP-seq Transcriptome In vitro MCF10A yes Paired
CRISPR knockout and

interference (Hill et al., 2018)

Perturb-ATAC Epigenome
(Chromatin accessibility) In vitro

Primary human
keratinocytes, B
lymphoblasts

no Single CRISPR knockout and
interference (Rubin et al., 2019)

ECCITE-seq
Multimodal

(Transcriptome,
proteome, clonotypes)

In vitro
Sez4, MyLa, PBMC,

NIH-3T3 yes Single CRISPR knockout (Mimitou et al.,
2019)

Direct-capture
Perturb-seq Transcriptome In vitro iPSCs, K562 yes Multiple

CRISPR knockout,
interference and

activation

(Replogle et al.,
2020)

Direct-seq Transcriptome In vitro Jurkat, K562 yes Multiple CRISPR knockout and
activation (Song et al., 2020)

In vivo Perturb-seq Transcriptome In vivo
Progenitor cells of

the mouse forebrain no Single CRISPR interference (Jin et al., 2020b)

PoKI-seq Transcriptome In vivo

Human primary T
cells, NSG mice
bearing human
melanoma cells

no Single CRISPR knock-in (Roth et al., 2020)

Spear-ATAC Epigenome
(Chromatin accessibility) In vitro

K562, GM12878,
MCF7 yes Single CRISPR knockout and

interference (Pierce et al., 2021)

CRISPR-sciATAC Epigenome
(Chromatin accessibility) In vitro NIH-3T3, K562 yes Single CRISPR knockout (Liscovitch-Brauer

et al., 2021)

genome-scale
Perturb-seq Transcriptome In vitro K562, RPE1 yes Single CRISPR interference (Replogle et al.,

2022)

Perturb-map
Multimodal

(Spatial transcriptome,
imaging)

In vitro, in vivo 293T, KP, 4T1 no Single CRISPR knockout (Dhainaut et al.,
2022)

AAV-Perturb-seq Transcriptome In vivo
Adult mouse brain
prefrontal cortex yes Single CRISPR interference (Santinha et al.,

2023)

CHOOSE screen Transcriptome In vitro
(organoid) Brain organoid no Paired CRISPR knockout (Li et al., 2023)
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biology, and cancer research (Moses and Pachter, 2022) (see the
spatial section below). Recently, a new multimodal scCRISPR-seq
called Perturb-map (Dhainaut et al., 2022) was developed to
enable multimodal phenotyping of CRISPR screens in situ by
imaging and spatial transcriptomics. Perturb-map is based on a
protein bar code (Pro-Code) system that uses triplet combinations
of a few linear epitopes to create a higher-order set of unique bar
codes (Wroblewska et al., 2018). These unique bar codes can
mark cells expressing different CRISPR gRNAs. It should be noted
that Perturb-map is the only scCRISPR-seq platform that enables
in vivo CRISPR screens combined with spatial transcriptome,
which is particularly suitable for the identification of genetic
determinants of tumor composition, organization, and immu-
nity. Dhainaut et al. (2022) applied Perturb-map to the study of
the TME. They knocked out 35 genes in a mouse model of lung
cancer and found that knockout of Tgfbr2 can promote TME
remodeling and immune exclusion.

The tools to analyze scCRISPR-seq data

scCRISPR-seq data contain rich perturbation information, which
is a natural advantage to exploring the association between
genotype and phenotype at a single cell level. For example, by
applying Perturb-seq to the K562 cell line, Adamson et al. (2016)
have shown that perturbation of PERK has a greater impact on
the unfolded protein response than ATF6 and IRE1α. Datlinger et
al. (2017) perturbed 23 transcription factors in the Jurkat cell
line under the condition of T cell receptor (TCR) activation with
CROP-seq and found that knockouts of LCK, ZAP70, and LAT
have a strong negative effect on TCR activation signaling.

However, the analysis of scCRISPR-seq data is a major
challenge due to its inherent noise. Thus, several bioinformatic
tools have been developed to help analyze scCRISPR-seq data
(Table S12 in Supporting Information). Generally, these
scCRISPR-seq data analysis tools focus on three parts (Figure
16B): (i) Data preprocessing, including quality control, normal-
ization, and differentially expressed genes detection, such as
MIMOSCA (Dixit et al., 2016), MUSIC (Duan et al., 2019), and
SCREE (Wei et al., 2023). (ii) Data denoise, including single-cell
imputation, escaping cells filtering, and compound factors
decomposing, such as MUSIC, mixscape (Papalexi et al., 2021),
and SCREE (Wei et al., 2023). (iii) Functional analysis, including
prioritizing the impact of each perturbation, identifying the
function of each perturbation, inferring regulatory network and
gene interaction, such as MUSIC, Normalisr (Wang, 2021),
scMAGeCK (Yang et al., 2020), Pando (Fleck et al., 2023) and
GEARS (Roohani et al., 2023). Specifically, LRICA is proposed to
decode the driver signal/component of the data by low-rank
matrix factorization. MIMOSCA is a computational framework
for calculating the relationship between sgRNA and each gene.
LRICA and MIMOSCA were developed as prototypes without
executable and user-friendly implementations. Thus, Duan et al.
(2019) developed MUSIC, a general computational framework to
evaluate the impact of each perturbation with topic modeling
(Blei and Lafferty, 2007), which was originally presented in the
machine learning and natural language processing community
for latent topic discovery in a particular set of documents. MUSIC
links genotype to phenotype with tolerance to substantial noise
and analyzes scCRISPR-seq data from three perspectives, i.e.,
prioritizing the gene perturbation effect as an overall perturba-
tion effect, in a functional topic-specific manner, and quantifying

correlations between different perturbations. scMAGeCK is also a
framework for analyzing scCRISPR-seq data, which is extended
from MAGeCK (Li et al., 2014). scMAGeCK includes two
modules, scMAGeCK-RRA and scMAGECK-LR, where scMA-
GeCK-RRA is used to identify significantly enriched sgRNAs by
the negative binomial distribution, and scMAGeCK-LR is used to
assess affected genes by linear regression. scMAGeCK showed a
good control of false positives and better sensitivity than other
methods. In addition to the general computational framework of
scCRISPR-seq, some tools focus on data denoising. For example,
SCEPTRE was developed for scCRISPR-seq data calibration using
conditional randomization testing. SCEPTRE demonstrated good
calibration and sensitivity to scCRISPR-seq data, yielding
hundreds of new regulatory relationships supported by orthogo-
nal biological evidence. mixscape was developed to improve the
signal-to-noise ratio of scCRISPR-seq data by filtering escaping
cells (cells induced sgRNA, but did not exhibit perturbation effect)
by mixed discriminant analysis. Normalisr is developed to
reconstruct gene regulatory network for scCRISPR-seq data.
Wang et al. (2022g) emphasized the significance of identifying
clone cells, as they can lead to false positives in scCRISPR-seq
data. SCREE serves as a comprehensive pipeline for scCRISPR-seq
data analysis. In contrast to the previously mentioned ap-
proaches, which primarily concentrated on data denoising and
mining in scCRISPR-seq, GEARS was specifically designed to
predict transcriptional responses to both single and multigene
perturbations. These methodologies have substantially enhanced
the analysis of scCRISPR-seq data.

Applications of scCRISPR-seq

scCRISPR-seq is widely applied in various fields due to its
powerful capabilities, including linking genotype to phenotype,
dissecting genetic regulations, and investigating genetic mechan-
isms in specific diseases, such as tumor and autism.

Linking genotype to phenotype
Compared with traditional CRISPR screening, which can only
identify genes with very distinct phenotypes, scCRISPR-seq has
the ability to uncover the functions of any genes. Therefore,
scCRISPR-seq is naturally suited for linking genotype to
phenotype on a large scale. For example, Jaitin et al. (2016)
revealed the effect of 22 TFs on the regulation of antiviral,
inflammatory, or developmental processes in lipopolysaccharide
(LPS) stimulated born marrow cells (BMCs) by CRISP-seq.
Adamson et al. (2016) analyzed systematically the effect of 83
unfolded protein response (UPR) related genes in K562 cells by
Perturb-seq. In addition, genome-scale Perturb-seq (Replogle et
al., 2022) offers unbiased, comprehensive profiling of genetic
perturbations (9,867 genes), facilitating systematical dissection
of relationships between genes related to gene translation and
ribosome biogenesis.

Dissecting genetic regulations
scCRISPR-seq is also used to dissect complex relationships
between genomic elements, including coding genes, transcrip-
tion factors, chromatin regulators, enhancers, and other non-
coding elements. For example, Adamson et al. (2016) discovered
the crosstalk between three UPR sensor genes (ATF6, PERK, and
IRE1) using Perturb-seq. CROP-seq perturbed TFs regulating
TCR activation in Jurkat cells upon LPS stimulation and
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uncovered the relationship between TFs. In addition, scCRISPR-
seq for enhancer perturbation, such as Mosaic-seq (Xie et al.,
2017), could discover novel enhancer-gene pairs. In addition,
scCRISPR-seq coupled with scATAC-seq, such as Perturb-ATAC,
Spear-ATAC, and CRISPR-sciATAC could reveal epigenetic
landscape remodelers in human B lymphocytes and leukemia
cells (Liscovitch-Brauer et al., 2021; Pierce et al., 2021; Rubin et
al., 2019).

Investigating genetic mechanisms
Several in vivo scCRISPR-seq platforms are available, enabling
studies of genetic mechanisms in specific diseases such as tumors
and autism. For instance, Perturb-map (Dhainaut et al., 2022)
facilitates the identification of genetic determinants related to
tumor composition, organization, and immunity. Using Perturb-
map, Dhainaut et al. (2022) discovered that the knockout of
tgfbr2 in lung cancer cells promotes tumor microenvironment
remodeling and immune exclusion. Roth et al. (2020) conducted
a screen for chimeric antigen receptors that enhance T cell anti-
tumor functions, improving tumor infiltration and cell killing
rates under immunosuppressive conditions in melanoma using
PoKI-seq. Furthermore, Jin et al. (2020b) evaluated 35 de novo
loss-of-function risk genes associated with autism spectrum
disorder/neurodevelopmental delay (ASD/ND) using in vivo
Perturb-seq. They identified cell type-specific and evolutionarily
conserved gene modules from both neuronal and glial cell
classes. Li et al. (2023) also focused on these high-risk autism
spectrum disorder genes, and they uncovered their effects on cell
fate determination in mosaic organoids with CHOOSE system.
Recently, Santinha et al. (2023) employed AAV-Perturb-seq to
systematically analyze the phenotypic landscape associated with
22q11.2 deletion syndrome genes in the prefrontal cortex of
adult mouse brains. They identified three 22q11.2-linked genes
actively involved in both established and previously unrecog-
nized pathways governing neuronal functions in vivo.

Summary

In this chapter, we have presented a comprehensive review of
scCRISPR-seq, divided into three distinct parts, which include the
categories of scCRISPR-seq, tools for the analysis of scCRISPR-seq
data, and notable applications of scCRISPR-seq.
scCRISPR-seq has been a powerful approach for functional
genomics research (Bock et al., 2022). In this section, we have
categorized scCRISPR-seq into three primary categories based on
its integrated omics approach: transcriptome-based scCRISPR-
seq, epigenome-based scCRISPR-seq, and multimodal scCRISPR-
seq. Given the inherent noise in scCRISPR-seq data, a multitude
of bioinformatic tools have been developed to aid in its analysis,
resulting in significant improvements.

The versatility of scCRISPR-seq has led to its widespread
application across various fields, offering potent capabilities such
as connecting genotype to phenotype, dissecting genetic regula-
tions, and exploring genetic mechanisms in specific diseases like
tumors and autism. Nevertheless, before its broader adoption in
biological research, three key aspects require attention: (i)
reducing complexity and cost: efforts should be made to further
streamline and reduce the complexity and cost of scCRISPR-seq
experiments. This will enhance scalability and accessibility,
allowing more laboratories to leverage this technology. (ii)
Expanding applicability to complex tissues and in vivo settings:

while current scCRISPR-seq platforms primarily target cell lines,
there is a pressing need to develop more robust scCRISPR-seq
platforms that can be applied to more complex tissues, including
organoids, and ideally in vivo settings. This expansion will enable
a broader range of biological investigations. (iii) Noise reduction
techniques: As the number of scCRISPR-seq platforms grows, it
becomes crucial to develop more powerful methods for decipher-
ing the inherent noise in scCRISPR-seq data. These methods will
contribute to the reliability and interpretability of scCRISPR-seq
results, further enhancing their utility in diverse research
contexts.

Epilogue

scRNA-seq technology has attracted widespread attention from
many scientists around the world because it has the advantage of
providing an unprecedented method to study cell heterogeneity
at the single-cell level. A mere 14 years have elapsed since the
establishment of a new era in scRNA-seq research, which was
preceded by the initial conceptual and technical breakthrough
achieved by Tang et al. (2009) in 2009. The field of scRNA-seq
research is currently experiencing a surge in studies, driven by
the continuous development of sequencing technology and
bioinformatics. The maturity of scRNA-seq technology has
greatly facilitated advancements in other single-cell omics
studies. At present, single-cell omics detection has been extended
to the genome (Dey et al., 2015), epigenome (Muto et al., 2021),
spatial transcriptomics (Chen et al., 2022), proteome (Peterson et
al., 2017; Specht et al., 2021), metabolome (Shrestha, 2020)
and other multiomics levels (Angermueller et al., 2016),
providing a more comprehensive, refined and complete analysis
strategy for single-cell level research. In this review, we
summarize the state-of-the-art developments in single-cell omics
technologies, data analyses, and their applications, outlining the
landscape of the single-cell sequencing field across multiple
layers.

In Chapter 1, we provide a comprehensive overview of the
currently available scRNA-seq technologies, experimental meth-
odologies, data analysis procedures, and their applications within
the biomedical field. Initially, single-cell sequencing was per-
formed by isolating single cells and independently constructing a
sequencing library. These single-cell sequencing technologies
can only detect a small number of cells (tens to hundreds), such
as the Tang method, STRT-seq, and SMART-seq (Islam et al.,
2012; Ramsköld et al., 2012; Tang et al., 2009). However, with
the in-depth study of sequencing technology, single-cell identi-
fication based on barcode tags has emerged, and with the
emergence of new single-cell separation technologies based on
microdroplets or microwells such as Drop-Seq and Cyto-Seq (Fan
et al., 2015a; Macosko et al., 2015), and single-cell transcrip-
tome sequencing has entered the era of high-throughput. The
sequencing cost has been dramatically reduced, while automa-
tion and throughput have been significantly increased. ScRNA-
seq technology solves the problem of cell heterogeneity, opens
new avenues for personalized treatment of clinical diseases,
especially tumors, and promotes the development of precision
medicine. However, scRNA-seq has limitations of low capture
efficiency and high dropouts due to the low amount of starting
material. Compared with bulk RNA-seq, scRNA-seq produces
noisier and more variable data. Although, researchers have
designed a variety of tools to conduct diverse scRNA-seq data

80 SCIENCE CHINA Life Sciences Vol.68 No.1, 5–102 January 2025 https://doi.org/10.1007/s11427-023-2561-0

https://doi.org/10.1007/s11427-023-2561-0


analyses, the technical noise and biological variation (e.g.,
stochastic transcription) still pose huge challenges for computa-
tional analysis of scRNA-seq data (Chen et al., 2019a). Therefore,
data analysis methods still need to be further optimized and
improved.

Compared with the increasingly mature scRNA-seq technol-
ogy, the other single-cell omics technologies are still budding. In
Chapters 2, 3, 4, and 5, we focus on the state-of-the-art tools,
computational methods, and applications for single-cell genome,
epigenome, proteomic, and metabolomics sequencing over the
past ten years. ScWGS has revolutionized our understanding of
genetic variation and its impact on human health and disease.
The rapid development of it has accelerated genomic research,
enabled personalized medicine, and provided valuable insights
into the genetic basis of diseases and human genome diversity.
Cells exhibit extensive heterogeneity in terms of chromatin
accessibility, nucleosome positioning, histone modifications, and
DNA methylation. Mapping this epigenomic information in
single-cell samples is very important for developmental biology,
cancer research, and so on. Advances in single-cell epigenomic
sequencing approaches are enabling high-resolution mapping of
chromatin states in single cells. However, nowadays, single-cell
epigenomic techniques suffer from data loss. As a result, even
though individual cell epigenomic data sets are powerful
resources for clustering analyses and for revealing cellular
heterogeneity based on the collection of a great number of target
sites, they have only very limited ability to provide information
on single target sites (Carter and Zhao, 2021). Therefore,
improving the coverage of chromatin target sites in various
individual cell epigenomic assays will be required in future
studies, which will contribute to understanding cell heterogene-
ity at a whole cell level and single specific site. Single-cell
proteomics is in the early stage of explosive development due to
its complex constituents, low abundance, wide dynamic range,
and lack of amplified ability. Just in 2019, analysis of the
proteome from single cells was described as a “dream”, but today
there have been several promising tools developed (Marx, 2019).
We believe that with the optimization of accessibility and the
further improvement of throughput, the truly large-scale
applications of single-cell proteomics in scientific and clinical
research, such as organ maps, drug screening, and precise
disease classification, are within reach. Single-cell metabolomics
is used to identify the composition of metabolites in a single cell,
measure their abundance, and study their dynamic changes.
Meanwhile, the metabolome represents the downstream pro-
ducts of the genome, transcriptome, and proteome, and provides
a more immediate and dynamic snapshot of the functionality
(Shrestha, 2020). Overall, single-cell omics technologies are still
in the budding stage, and they are going to continue to flourish.

A single cell serves as the fundamental unit of life. Multi-omics
analysis of a single cell can offer profound insights into the cell’s
phenotype, disease state, and environmental impacts. In
Chapters 6, 7, and 8, we comprehensively summarize the
integrated analysis of multi-omics, the combined application of
scRNA-seq and CRISPR screening, and spatial transcriptome. In
intricate biological processes, such as tumorigenesis and aging,
heterogeneity occurs on different levels, including the genome,
transcriptome, proteome, and epigenome. If only one component
is analyzed from a single cell at a time, only the local overview of
the gene regulatory network can be detected, while the complex
global situation cannot be accurately predicted. In this situation,

multi-omics technology highlights its unique advantages, which
can provide a more complete map of the gene regulatory network
in the study of complex tissues. For spatial transcriptomics, it has
enabled the measurement of gene expression with spatial
information preserved, which will be conducive to investigating
intercellular relationships and discovering novel regulation
mechanisms in the spatial context. In addition, spatial tran-
scriptomics makes it possible to explore the spatial regulation
mechanisms of cell fate determination and the architecture of
tissue patterning. Compared with traditional CRISPR hybrid
screening, the combination of scRNA-seq and CRISPR can not
only screen thousands of gRNAs in a single experiment but also
simultaneously capture perturbed full-transcriptome data for the
clearest understanding of cell type specific gene function and
pathway analysis. Therefore, the combination of these techni-
ques enables a better and deeper understanding of key biological
processes and mechanisms, which is an important direction for
the development of single-cell technology in the future.

Nowadays, single-cell omics technologies have witnessed
significant advancements in terms of both throughput and
resolution. Moving forward, the primary trends in single-cell
technology development are to improve the efficiency and
throughput of single-cell sorting, enhance the sequencing
coverage and sensitivity, realize high-throughput multi-omics
studies, and develop more automated single-cell technology
platforms, which will help reduce the cost and technical
threshold of single-cell technology. The single-cell technology
promises to be widely used in the field of scientific research and
research transformation and will have a great contribution to
health monitoring, disease diagnosis, and treatment.
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